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Abstract

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for
coronavirus disease of 2019 (COVID-19) that infected more than 760 million people
worldwide with over 6.8 million deaths to date. COVID-19 is one of the most
challenging diseases of our times due to the nature of its spread, its effect on
multiple organs, and an inability to predict disease prognosis, ranging from being
completely asymptomatic to death. Upon infection, SARS-CoV-2 alters the host
immune response by changing host-transcriptional machinery. MicroRNAs (miRNAs)
are regarded as post-transcriptional regulators of gene expression that can be
perturbed by invading viruses. Several in vitro and in vivo studies have reported
such dysregulation of host miRNA expression upon SARS-CoV-2 infection. Some of
this could occur as an anti-viral response of the host to the viral infection. Viruses
themselves can counteract that response by mounting their own pro-viral response
that facilitates virus infection, an aspect which may cause pathogenesis. Thus,
miRNAs could serve as possible disease biomarkers in infected people. In the cur-
rent review, we have summarised and analysed the existing data about miRNA
dysregulation in patients infected with SARS-CoV-2 to determine their concordance
between studies, and identified those that could serve as potential biomarkers
during infection, disease progression, and death, even in people with other co-
morbidities. Having such biomarkers can be vital in not only predicting COVID-19

prognosis, but also the development of novel miRNA-based anti-virals and

Abbreviations: 3’ UTR, 3’ untranslated regions; 5 UTR, 5’ untranslated regions; Ago, argonaute; ASM, asymptomatic; C, control; CAP, community acquire pneumonia; CircRNAs, circular
RNAs; COVID-19, coronavirus disease of 2019; Crit, critical; DEGs, differentially expressed genes; DGRC8, DiGeorge Syndrome Critical 8; ICU, intensive care unit; INF, infected; INcCRNAs,
long non-coding RNAs; MI, mild; miRNAs, MicroRNAs; MM, mild/moderate; MO, moderate; NGS, next generation sequencing; nt, nucleotide; pri, primary; RAN-GTP, RAs-related nuclear
protein; RE, recovered; RNA, Ribonucleic Acid; RISC, RNA-induced Silencing Complex; RITS, RNA-induce Transcriptional Silencing; RT-qPCR, reverse transcriptase quantitative polymerase
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Tocilizumab.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, pro-

vided the original work is properly cited.

© 2023 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd.

Rev Med Virol. 2023;e2449.
https://doi.org/10.1002/rmv.2449

wileyonlinelibrary.com/journal/rmv 1 of 31


https://doi.org/10.1002/rmv.2449
https://orcid.org/0000-0003-0474-6558
https://orcid.org/0000-0003-0383-3908
https://orcid.org/0000-0001-5563-9846
https://orcid.org/0000-0002-7553-9006
https://orcid.org/0000-0002-1338-2568
https://orcid.org/0000-0002-0880-2396
https://orcid.org/0000-0002-2572-1678
https://orcid.org/0000-0002-1081-3756
mailto:tarizvi@uaeu.ac.ae
mailto:fmustafa@uaeu.ac.ae
https://orcid.org/0000-0003-0474-6558
https://orcid.org/0000-0003-0383-3908
https://orcid.org/0000-0001-5563-9846
https://orcid.org/0000-0002-7553-9006
https://orcid.org/0000-0002-1338-2568
https://orcid.org/0000-0002-0880-2396
https://orcid.org/0000-0002-2572-1678
https://orcid.org/0000-0002-1081-3756
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/rmv
https://doi.org/10.1002/rmv.2449
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frmv.2449&domain=pdf&date_stamp=2023-05-05

20031 | WILEY

AHMAD ET AL

KEYWORDS

CoV-2

1 | INTRODUCTION

It has been estimated that up to 1.5%-2% of the total human genome
transcribes protein-coding RNAs (messenger or mRNAs), whereas
~28% transcribes non-coding RNAs (ncRNAs).* Until now, several
types of ncRNAs have been identified, including small interfering
RNAs, small nuclear RNAs, small nucleolar RNAs, microRNAs (miR-
NAs), long non-coding (Inc) RNAs, and circular (circ) RNAs. Among
these, miRNAs are a class of single-stranded non-coding RNAs which
are ~20-25 nucleotide (nt) long2 These miRNAs are critically
involved in regulating mRNA gene expression and any dysregulation
in their expression affects post-transcriptional gene expression that
can significantly change cellular biological processes. In general,
miRNAs alter gene expression after binding to miRNA response el-
ements (MREs) that are primarily observed within the 3’-untrans-
lated regions (3’ UTRs) of the target mRNAs.® miRNAs generally act
as negative gene regulators and their binding to MREs results in
translation repression of the target mRNAs or its complete

degradation.

1.1 | MIRNA biogenesis

Most cellular and viral miRNAs are initially produced as primary (pri)-
RNAs hundreds to thousands of nucleotides long with at least one or
more ~80 nt stem loop structure(s).*” Over one-third of human
miRNAs exist in clusters and transcribed as “polycistronic RNAs.”
Synthesised in the nucleus by RNA polymerase Il that also tran-
scribes other cellular genes, miRNAs are capped and polyadenylated
like cellular mRNAs.®® This is followed by processing of these pri-
miRNAs into ~65-70 nt long pre-miRNA with 2 nt overhangs at
the 3’ end by the Microprocessor Complex that comprises of the
nuclear RNase |ll enzyme Drosha and its cofactor, Pasha/DiGeorge
Syndrome Critical 8.7 This processing maintains the imperfect stem
loop structures and these partially processed substrates are then
exported to the cytoplasm by the RAN-GTP transporter, Exportin-5.
Once in the cytoplasm, they are further processed by another RNase
Il enzyme, Dicer, with the help of transactivation-responsive RNA-
binding protein, which binds to dsRNA, which removes the loop
part of the hairpin.”'° Now fully mature and ~21-24 nts in length,
the miRNAs resemble siRNAs of the RNA interference pathway. Each
duplex miRNA leads to the generation of two mature miRNA strands
termed 5p or 3p, depending upon their location in the pre-miRNA
relative to its 5’ end. Either miRNA strand can be loaded onto the
RNA-induced Silencing Complex (RISC) as the “guide” strand for

therapeutics which can become invaluable in case of the emergence of new viral

variants with pandemic potential in the future.

biomarkers, COVID-19, differential gene expression, disease progression, miRNAs, SARS-

silencing of the target mRNA by the slicer protein, Argonaute (Ago),
while the other “passenger” strand is degraded.!! The cellular envi-
ronment or cell type predominantly determines strand selection
which could either be 5p or 3p exclusively, or either one equally.2 A
single miRNA can target mRNA transcripts with complementary se-
quences that can number in hundreds. If the complementarity is
perfect between the two molecules, the mRNA is degraded (as hap-
pens mostly in plants), while if there is imperfect base pairing, the
mRNA undergoes translational inhibition, as is observed mostly in the
animal cells.'?

1.2 | Mechanism of miRNA action

MiRNAs inhibit gene expression post-transcriptionally in many ways.
They can remove the cap structures at the 5’ end of the transcripts,
deadenylate the poly A tail at the 3’ end of the transcripts, inhibit
function of ribosome during translation, or degrade the transcript
itself.”*® Unique to yeast cells, RNA-mediated inhibition of gene
expression can happen at the level of chromatin as well by the
interaction of the miRNA with the “RNA-induce Transcriptional
Silencing (RITS) complex.!* In the animal cells, miRNAs function
primarily by binding through incomplete complementarity with the
target sequence at the 3’ UTR of the mRNAs, leading to inhibition of
translation via RISC. miRNAs act by binding to and silencing target
mRNAs through base pairing between a group of “seed sequences,”
the primary determinants of mRNA target recognition in miRNAs.*
These are located between nts 2-8 at the 5’ end of the miRNA that
interact with complementary seed sequences (MREs) found within
the 3’ UTR of target genes. Other than the 3' UTR, regions such as
the 5’ UTR, the promoter region, as well as the coding region of

target genes have also been observed to be targeted by miRNAs.&*°

1.3 | MiRNAs in SARS-CoV-2

Soon after the discovery of miRNAs in 1993 and their subsequent
role in mMRNA expression, several studies focussed their attention on
elucidating the mode(s) of miRNA biogenesis and function.'® Ad-
vancements in gene expression analysis made it easy to detect any
change in an organism's miRNA expression between control and
compromised samples. The recent coronavirus disease 2019
(COVID-19) pandemic caused by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) has resulted in more than 6.8 million
deaths globally so far (https://covid19.who.int/). It is evident that
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upon infection, viruses hijack host immune system to not only facil-
itate their replication, but also disable the immune response against
the virus.2”*® To ease their entry and invade host-immune system,
SARS-CoV-2 has also been found to change transcriptional profile of
numerous pathways associated with host-cell-defence mechanisms.*®
Recent studies have found that upon infection, SARS-CoV-2 signifi-
cantly alters multiple cellular pathways in several human organs,
including heart, lungs, liver, and kidneys.?°

In most of the organs, SARS-CoV-2 infection results in destabi-
lisation of the host cellular immune response and release of proin-
flammatory cytokines, dysregulated production of inflammatory cells,
endothelial dysfunction, and coagulation abnormalities (Table 1).20-43
It has been long known that upon infection, host cells produce
miRNAs to counter viral attacks by regulating the host-immune
response.***> Moreover, viruses also transcribe miRNAs that may
interfere with the host-cellular defence system.* Since the start of
COVID-19, several studies have investigated the possible dysregu-
lation of human miRNAs after SARS-CoV-2 infection in vivo, in vitro,
and in silico*®™® Initially, human miRNAs were predicted using
computer-assisted techniques that were further validated through in
vivo or in vitro studies.*®=° In terms of miRNAs related to SARS-
CoV-2/COVID-19, within a short span of only ~2 years, already
hundreds of studies have been published. In this systematic review,
we not only summarise the currently available data, but also analyse
the available data from patients to examine the performance of
currently enumerated miRNAs as biomarkers across the globe. Using
networking techniques and cluster analysis, we identify
experimentally-verified miRNAs across the globe that may act as
possible disease markers for further COVID-19 investigations.

2 | METHODS
2.1 | Data collection

Most of the existing reviews on the role of miRNAs in COVID-19
have summarised the current available data based on dysregulated
miRNAs either predicted using in silico techniques or observed
experimentally in vivo or in vitro studies. To be considered as a valid
biomarker, miRNAs should possess the same expression profiles
under certain disease conditions. Unfortunately, none of the recent
reviews cross-checked the existing data to validate the specificity of
the current proposed biomarkers except for a review from Moatar

et al’?

who predicted and grouped possible miRNA targets and
associated pathways after SARS-CoV-2 infection reported in a few
studies using human patients. In the current review, we only focussed
on the miRNA expression results from the studies originating
through analysis of human patients enrolled in different healthcare
facilities during the pandemic and excluded all other in silico, in vitro
and in vivo studies. We did this to ensure that our predicted targets
reflected real life scenario. Figure 1 describes the data-search
strategy and inclusion-exclusion criteria used in our study. The data

included in this review was searched through the PubMed database

ranging from December 2020 to November 2022 using words
“COVID-19, SARS-CoV-2, miRNA”. We also searched other associ-
ated databases like Google (https://www.google.com/), Google
Scholar (https://scholar.google.com/), ScienceDirect (https://www.
sciencedirect.com/) and PubMed Central (https://www.ncbi.nlm.nih.
gov/pmc/) to ensure the inclusion of most of the current data. This
data was crossed-matched to the data available in PubMed, and most
of the data searched on other databases was also available in
PubMed.

2.2 | Network analysis

As we were interested in miRNAs expressed at various stages of
disease progression, we constructed disease stage-specific miRNAs
interactions and their interacting networks using Cytoscape v.
3.9.1.52 Briefly, miRNA lists were constructed from the given litera-
ture and grouped based upon disease severity. Healthy controls were
designated as “controls” whereas infected patients were grouped into
asymptomatic (ASM), mild (Ml), moderate (MO), severe (S), critical
(Crit) and others, as per the study. Where the authors did not further
sub-group the disease severity, data was named as “infected”. miRNA
interaction networks were created with either overlapping miRNAs
in different disease groups or among authors representing their data
in similar disease groups. These interacting networks helped to sort
out miRNAs that have been identified in various studies under par-

allel disease conditions.

2.3 | MIiRNA selection criteria

The miRNAs included within this study were selected based on the
differentially expressed genes (DEGs) between the healthy controls
and infected group or between groups representing different disease
stages specified earlier. We included all the miRNAs considered as
DEGs by their publishing authors. While comparing miRNA expres-
sion, we found multiple miRNAs expressed commonly in various
disease stages based on disease severity (mild, moderate, or severe).
In this scenario, we chose only those miRNAs that were represented
in at least 5 or more comparative groups to limit overcrowding. We
also removed miRNAs showing opposite expression in the same
group or the miRNA not specifying the 3p or 5p strand position. For
example, if any study described miR-150 as a dysregulated miRNA
and another study mentioned miR-150-5p, both of these miRNAs
were not considered the same and excluded. Furthermore, we
removed one-time expressing miRNAs in any group during network

construction.

2.4 | Clinical data selection

Most of the selected studies shared both demographic and clinical

data from the patients. However, for the sake of simplicity and
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TABLE 1 Associated cellular pathways and manifestations in different human organs after SARS-CoV-2 infection.

Organ(s)

Lung

Kidneys

Blood

Skin

AHMAD ET AL

Organ failure during SARS-CoV-2
Principle cellular pathways involved infectionYes/No/Not applicable

ACE2 pathway dysregulation Yes, lung failure (~5%)
Acute respiratory distress syndrome (ARDS)
Interstitial inflammation

Immune response (circulating proinflammatory cytokine
and chemokine upregulation, including tumour necrosis
factor-a and interleukin 1B), hemophagocytosis
(macrophage activation syndrome), immune
suppression (lymphopenia), Hypoxia

Diffused pulmonary intravascular coagulopathy
TGFB signalling

Oxidative stress

Pyruvate metabolism

Neutrophil extracellular trap (NET) formation

ACE2 pathway dysregulation Yes, acute kidney injury (~5%)
High ACE2, TMPRSS2 and CTSL levels

Systematic inflammatory response

High cytokines/chemokines levels

Dysregulated renal hemodynamics

Induced MAPK and STAT3 pathways

Induced senescence-associated secretory phenotype
Induced interferon a/f pathway

Reduced collagen biosynthesis and integrin cell surface
interactions

Induced ROS generation

Lymphopenia Venous thromboembolism (~10%)
Induces inflammatory markers

Cytokine storm

Lymphocyte's apoptosis

Systematic thrombocytopaenia

Endothelial barrier disruption/dysfunction

Blood hypercoagulability

Type | interferon

VEGFA/Ang/Tie2 pathways

Purpuric eruptions Skin abnormalities (~20%)
Livedo reticularis

Retiform purpura

Skin micro-thrombosis

Induce macrophagy

Induce inflammatory markers

TGFB signalling

Cyclic GMP-AMP (cGAS-STING) pathway

References

20,22,24,37

20,26,28,38

20,29,34

20,36,40,43
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TABLE 1

Organ(s)

Brain, nervous
system

Heart

Gut

Endocrine

(Continued)

Principle cellular pathways involved
Skeletal muscle injury

Peripheral neuropathy

Taste impairment

Nerve pain

Hyper inflammation

Metabolic dysregulation

Microglia activation

Infected olfactory neurons

Olfactory and gustatory sense dysfunctions
Guillain-barre syndrome

Systematic neurological illness
Haemorrhagic and ischaemic strokes
Ocular manifestations

Conjunctival congestion, chemosis and epiphora
Matrix metalloproteinases (MMP) pathway
Neurofilament light chain pathway
Upregulated ACE2 expression

Reduced angiotensin 1-7 levels

Induced myocarditis/injury (induced ADAMTS13 levels)
Anti-fibrinolytic response

Hyper inflammation, hypotension

Reduced oxygen supply

Ventricular arrhythmias

Macrophage activation syndrome

Induced Activin/TGF signalling

Induced biological ageing/senescence (SASP)
ACE2 dysregulation in the ileum and colon
Upper tract inflammation

Gl tract epithelial cell apoptosis

Elevated AST/ALT/bilirubin levels
Hepatocyte apoptosis

Hypoxia

Endocytosis signalling pathway
Macrophage induced immune response

High ACE2 expression on hypothalamic and pituitary
tissues

High cortisol levels

Degeneration and necrosis of adrenal gland

Electrolyte imbalance (hyponatremia and hypernatraemia)

Hypothyroidism

Organ failure during SARS-CoV-2
infectionYes/No/Not applicable

Not applicable

Yes, acute heart failure (~2.5%) in critical patients;
myocardial injury (~36%); vascular thrombosis (~16%)

Not applicable

Not applicable

WILEY__|__%°f3
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Terms/record search
through PubMed
databases (years 2020-
2022) using keywords
“COVID-19, SARS-CoV-2,
miRNA”
n=447

Articles focusing on
miRNA role in disease
progression
(n=145)

—

Research articles
focusing of miRNA
dysregulation in humans -
included in this study
(n=35)

Research Articles (n= 349)
General reviews (n=94)
Systematic reviews (n=4)

Bioinformatics/in silico analysis (n= 33)
In vitro studies (n=15)
In vivo studies (n=59)
Reviews (n=38)

Full text articles depicting the role of
miRNAs in COVID-19 disease
progression in human

FIGURE 1 Study design. Literature search
strategy and exclusion and inclusion criteria
for this review.

consistency, we included only gender and age in our study which

were common to all studies.

2.5 | Data analysis and statistics

Demographic and clinical data was collected from each study and was
analysed using Microsoft Excel 2021 and IBM SPSS Statistics soft-
ware v.26. GraphPad Prism v. 9.0.0 (121) was used to create graphs
and analyse data among groups, wherever applicable.

3 | RESULTS

3.1 | MIiRNA dysregulation in SARS-CoV-2-infected
patients

The first step in this study was to collect suitable data. As we were
interested in miRNAs dysregulated after SAR-CoV-2 infection, we
found 349 research articles, 94 general reviews, and 4 systematic
reviews on this topic (Figure 1). Out of these, 145 articles and re-
views focussed on miRNAs in COVID-19 progression. Out of these,
33 were in silico, 59 were in vivo, and 15 were in vitro studies along
with 38 reviews. Our preference was to include and analyse the data
extracted from human studies from patients enrolled in a health fa-
cility around the globe. We finalised and selected 35 studies that
reported dysregulation of host-miRNAs following SARS-CoV-2

infection (Figure 1).

Collected data showed that of these, most of the studies were
published during the year 2021 (n = 16),°°7%® followed by 2022
(n = 15),°982 with the least numbers in the year 2020 (n = 4)°384-87
(Figure 2a). Although the selected studies were published globally,
most of them were reported from China (n = 8), followed by lItaly
(n = 7), Spain (n = 4), and USA (n = 3). Australia, Germany, Iran and
Turkey published two articles each. The remaining countries with one
study included Austria, Brazil, Czech Republic, Egypt, Israel, and
Lebanon (Figure 2b). The samples used for RNA extraction for miRNA
analysis included, plasma (n = 14), serum (n = 9), whole blood cells/
peripheral blood samples (n = 6), and nasopharyngeal swabs (n = 4).
One study took both plasma and nasopharyngeal samples, whereas
one study collected RNA from bones and one from placenta of
pregnant women infected with SARS-CoV-2 (Figure 2c). To deter-
mine changes in miRNA expression levels, 18 studies chose reverse
transcriptase quantitative PCR (RT-gqPCR), whereas 17 studies used
small RNA sequencing/next generation sequencing (NGS). RT-gPCR
was the popular choice for validating the sequencing data. Only 7
studies used a study design with two cohorts, discovery and valida-
tion. Table 2 summarises the characteristics of the studies included in
this review, whereas Table S1 contains the raw data used in this
study.

3.2 | Demographic and clinical data analysis

Out of 35 studies, 30 mentioned participant ages, a mixed-age range

from 3.5 to 93 years, while thirty-one mentioned gender of the
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FIGURE 2 Analysis of the publishing year, regions, RNA extraction methodology, and miRNA expression analysis platform used in the
studies included in this review. M, muscle; B, bone; BM, bone marrow; NPS, nasopharyngeal swabs; WBC, white blood cells.

participants (Table 2). In all of these studies, the ethnicity of the
participants was not disclosed and a written consent form approved
from ethical committees was signed by each participant. In most of
the studies, infected patients after testing positive for COVID-19
infection were further categorised into the following stages: (i)
mild, (ii) moderate, (iii) severe, (iv) critical, and (v) asymptomatic.
Other common stages were patients with or without mechanical
ventilation, recovered, or deceased. Mechanical ventilation was
defined as falling within the severe stage, intensive care unit patients
without ventilation as moderate, and asymptomatic as mild, in this
review. Some studies combined these stages as one group, as given in
Table 2. A few studies also examined the effect of co-morbidities like
diabetes, cerebrovascular issues, pregnancy, common cold, influenza,

and bone fractures in infected patients.

3.3 | MIiRNA dysregulation in “Inf vs C” studies

Our data showed that 13 studies®®°456:57:66.70-7280-8385 o mpared
miRNA regulation in SARS-CoV-2 infected patients without further
sub-staging of the disease severity, whereas 22 studies reported
their results as an overall and also in sub-groups (Table 2). A total
of 404 miRNAs were reported in these studies that showed sig-

nificant dysregulation in infected patients. As we were interested in

those miRNAs that were reported in at least two studies, 70 miR-
NAs were selected from 16 studies®®5%-57:¢3:66-68.71.73,78,79,61-83,85
to create an miRNA-study network in infected (Inf) versus (vs)
control (C) patients. This network contains 86 nodes and 160 edges
with 3721 average number of neighbours (Figure 3a). The red or
green edges (connecting lines) represent up- or down-regulation of
miRNAs in any study. We further filtered out 30 miRNAs which
showed inconsistent expression patterns within studies. The final
list for the present study contained 29 up-regulated and 11 down-
regulated miRNAs with consistent expression (Figure 3b, Table S2).
In the up-regulated miRNAs, miR-320b and miR-320c appeared
in four studies, while miR-1290, miR-15a-5p, and miR-27b-3p
appeared in three studies. In down-regulated miRNAs, miR-150-5p

appeared in six studies.

3.4 | MIRNA dysregulation in “severe (S)” versus (vs)
“control (C)” studies

Review of current literature revealed that there were five
studies®?°%788486 that compared miRNA expression in severely
infected patients with healthy controls. These also included studies
where authors combined two or more disease stages due to similar

miRNA expression trends. These five studies collectively reported
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FIGURE 3 MiRNAs dysregulated after SARS-CoV-2 infection in “Infected versus Control” group. (a) miRNA Interaction network among
miRNAs published in literature, showing commonly found miRNAs from various studies. Cytoscape 3.9.1 was used to construct the network.
The red and green connecting lines (edges) show up- or down-regulation of miRNAs reported from each study. (b) Heatmap of the 40

dysregulated miRNAs with consistent expression profile in infected patients. The red and green highlighted miRNAs represent the reported up
(U)- or down (D)-regulated miRNAs, respectively, with the number of Us or Ds reflecting the intensity of dysregulation. See text for details.

513 differentially-regulated miRNAs. To construct a miRNA-study
network, we selected 85 miRNAs that appeared in at least two of
the five studies. Furthermore, we had to remove two studies from the
network analysis since they showed no overlapping/common miR-
NAs. Thus, the network consisted of 88 nodes (85 common miRNAs
and three studies), 170 edges and 3864 average number of neigh-
bours (Figure 4). There were no shared miRNAs among the three
selected studies; however, Akula et al®” and Chen et al®* revealed
two shared miRNAs (miR-375 and miR-150-5p) with suppressed
expression in severe disease when compared to uninfected in-
dividuals. We also observed 83 differentially-regulated miRNAs that
were reported from Tang et al®¢ and Chen et al.2* While 12 and 15 of
the shared miRNAs from both studies showed the same expression
profile (up- or down-regulation, respectively; Table S3); interestingly,
a majority of these shared miRNAs (67%; n = 56) showed an opposite
expression profile in these studies. This suggests the need for further
study of expression of these miRNAs in the severe group compared
to uninfected individuals since these results came from only three
studies.

3.5 | Unique miRNAs that distinguish “severe” from
“infected” patients

During data analysis, we observed that most of the differentially-
regulated miRNAs found in the available data were not present in
all studies, filtering out many miRNAs that could have been of
importance. We were especially interested in those miRNAs that

could distinguish severe disease in infected patients without further

disease sub-groupings like mild or moderate. To achieve this goal, we
first compared and removed those miRNAs from “Inf vs C” and “S vs
C” groups that showed opposite expression within the group from
various studies. Such a strategy removed 30 miRNAs from the “Inf vs
C” and 56 miRNAs from “S vs C” groups. The outcome was 156
miRNAs shared by both groups, meaning these miRNAs could be
used to distinguish patients with severe COVID-19 from infected
individuals (Figure 5a, Table S4). Out of these 156 miRNAs, 51 were
up-regulated and 43 were down-regulated in both groups. The
remaining 62 miRNAs (Figure 5b) likely distinguish “severe” cases
from “non-severe patients” due to their opposite expression in both
conditions (18 up-regulated and 44-down regulated miRNAs in se-
vere disease condition). Interestingly, from this list miR-15a-5p and

56,57,73,78,82,84,86 and

miR-31-5p appeared in two or more studies
could potentially serve as biomarkers for disease severity. Table 3
summarises the targets and principle cellular pathways associated
with miRNAs regulated during Inf vs C and S vs C stages and cited
previously.#6:567388-120 \ost of the miRNAs were involved in tar-
geting virus-host interactions, viral replication, and host-immune

responses.

3.6 | MIRNA expression analysis in all stages of
disease severity after SARS-CoV-2 infection

As mentioned earlier, most of the studies included in this review
either represented their miRNA dysregulation data as “Inf vs C”
(n=13) or “Svs C” (n = 5) comparison. However, some of the studies

also further elaborated their results based on disease severity. To
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FIGURE 4 Dysregulation of miRNAs after SARS-CoV-2 infection in “Severe versus Control” group. The red and green lines connecting the
miRNAs (edges) show up (red)- or down (green)-regulation of miRNAs reported from each study.

gain further insights into how miRNAs dysregulate after SARS-CoV-2
infection, we combined the data from all such studies (n = 23) and
constructed a network of “miRNA-disease severity” to find abun-
dantly expressed miRNAs in literature since these miRNAs may be
able to distinguish disease severity in the infected patients. Towards
this end we combined the miRNAs from the following groups: “Inf vs
C”, “Severe/Moderate versus Control (5/MO vs C)”, “Severe versus
Moderate (S vs MO)”, “Moderate versus Control (MO vs C)”, “Survived
versus Deceased (SR vs DS)”, “Severe/Critical versus Mild/Moderate
(SC vs MM)”, “Severe versus Moderate versus Mild (S vs MO vs MI)”,
“Severe versus Mild (S vs MI)”, “Severe/Mild versus Control (S/MI vs
C)”, Severe versus Control (S vs C)” and “Recovered versus Infected
(RE vs Inf)”. Table S5 represents the summary of the total number of
reported miRNAs in different COVID-19 severity stages. It should be
noted that most of the groups included in this network were reported
in only one or two studies: S/MO vs C,%7 S vs MO,7384 MO vs C,8¢ SR
vs DS,”” SC vs MM,®* S vs MO vs MI,”® MO vs MI,73 S vs M|,60.7>78.82
S/MI vs C .84 RE vs Inf®Y) except “Inf vs C” and “S vs C”. Initially, this
network contained 71 miRNAs from 23 studies. However, we
removed 23 miRNAs that showed opposite regulation in the same
group. The final network comprised of 48 miRNAs and 10 disease
stages from 17 studies (Figure 6; Table S5). This network consisted of
58 nodes, 273 edges and 8034 average number of neighbours.

Seventeen miRNAs in this network showed consistent expression in
the different disease groups of which 8 were up-regulated (miR-127-
3h-3p, miR-1307-3p, miR-193-5p, miR-423-5p, miR-1292-5p, miR-
320c, miR-1273h-5p, and miR-1290), and 9 were down-regulated
(miR-106b-5p, miR-342-3p, miR-548j-3p, miR-28-5p, miR-96-5p,
miR-144-3p, miR-144-5p, miR-146b-5p, and miR-29b-3p) in the
infected samples. The remaining 31 showed altered expression in
distinct disease groups (Figure 6). A heatmap of these 48 miRNAs in
various studies showed that similar expression profile of many miR-

NAs was observed (Figure 7).

3.7 | MIRNA regulation in “deceased” versus
patients that “survived”

There were four studies®>°%7477 that observed 47 differentially-
regulated miRNAs in COVID-19 patients that died versus that sur-
vived (Table Sé). Interestingly, there were no overlapping/common
miRNAs observed among these studies. However, during compara-
tive analysis of these miRNAs with the ones observed among other
groups, we detected 10 unique down-regulated miRNAs that were
only present in the deceased group: miR-145, miR-17-p, miR-208a,
miR-24, miR-422a, miR-499, miR-8061, miR-885, miR-101-5p, and
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FIGURE 5 Possible miRNA as biomarkers that distinguish severe disease from mild or moderate. (a) Selection criteria for differentially-
regulated miRNAs distinguishing severe disease cases from uninfected. Red boxes show up-regulated while green boxes show down-regulated
miRNAs. (b) Up- (U)- and down- (D) regulated miRNAs in severe condition. The red boxes show up-regulated while green shows down-

regulated miRNAs.

miR-132-3p. In addition, we also observed up-regulation of miR-
1285-5p and decreased expression of miR-185-3p, miR-21, miR-
323a-3p, miR-378f, and miR-410-3p in the deceased patients when
compared to the remaining SARS-CoV-2-infected groups. These
miRNAs may be helpful in the further prognosis of infected patients
and their appearance may suggest deterioration of the patient, an
aspect that needs further investigation.

3.8 | MIiRNA regulation in SARS-CoV-2 infected
patients with other co-morbidities

62767 that also

Among the studies analysed, there were six studies
examined the role of other co-morbidities and conditions in SARS-
CoV-2-infected patients. These included patients with bone frac-
tures, community acquire pneumonia, common cold, diabetes, preg-
nancy, patients recovered from SARS-CoV-2 infection, and any
patient treated with Tocilizumab (TCZ). We found 110 miRNAs being
differentially-regulated within these groups. First, we filtered out 14
miRNAs that appeared in more than one of these groups followed by
61 more miRNAs that were also present in infected patients only.

The remaining 35 miRNAs were unique and can potentially be

considered as being regulated owing to the presence of other con-
ditions in COVID-19 infected patients (Table 4).

4 | DISCUSSION

MiRNAs have been reported as potential biomarkers in various dis-
eases, including COVID-19, that may be able to differentiate disease
severity in SARS-CoV-2 infected patients. Any change in miRNAs
expression can depict the molecular modification(s) at the cellular
level as these non-coding RNAs control the expression of genes
involved in the diverse cellular pathways.*?* Due to their small
structure, miRNAs are more stable and reliable, and have a longer
half-life in the collected samples.'?2 Although several diagnostic tests
are routinely performed to detect the viral infection, these tests have
limitations and are not able to predict the overall damage or next
stage of the disease or predict disease prognosis.'?>712> These tests
included nasal swab or saliva samples for SARS-CoV-2 detection
using RT-gPCR, serological tests based on SARS-CoV-2 antibodies,
including IgM and IgG, and tests for clinical markers, such as chest X-
ray, changes in inflammatory, haematologic or biochemicals markers.
Thus, the need for COVID-19-specific biomarkers exists that should
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TABLE 3 Differentially-regulated miRNAs in infected and severe stage and their targets/pathways in SARS-CoV-2 infection.

MiRNA
let-7a-3p
let-7b-3p
let-7d-3p
let-7e-5p
let-7f-2-3p
let-7g-5p
miR-10399-3p
miR-103a-3p
miR-106b-5p
miR-107
miR-122-3p
miR-122-5p
miR-1246
miR-125b-5p
miR-126-3p
miR-126-5p
miR-1273h-3p
miR-1273h-5p
miR-1287-5p
miR-1301-3p
miR-132-5p
miR-133a-3p
miR-144-3p
miR-144-5p
miR-145-3p
miR-146a-5p
miR-146b-5p
miR-148a-3p
miR-150-5p
miR-151a-5p
miR-155-5p
miR-15a-5p
miR-16-5p
miR-181a-2-3p
miR-181b-5p
miR-183-5p
miR-185-5p
miR-18a-3p
miR-18a-5p
miR-194-5p

Inf vs C
Up
Up
Up
Up
Up
Down
Up
Up
Down
Up
Up
Up
Up
Up
Down
Up
Up
Up
Up
Up
Down
Up
Down
Down
Down
Down
Down
Up
Down
Up
Down
Up
Down
Down
Up
Down
Up
Down
Down

Up

SvsC
Down
Up
Up
Down
Up
Down
Down
NA
Down
Down
Down
Down
Up
Down
Down
Down
Up
Up
Down
Up
Down
Up
Down
Down
Down
Down
Down
Down
Down
Up
Down
Down
Down
Down
Down
Down
Down
Up
Down

NA

Potential target(s)
STAT3, WNT, mTOR
STAT3, WNT, mTOR
STAT3, WNT, mTOR
3’ UTR of TMPRSS
STAT3, WNT, mTOR

STAT3, WNT, mTOR

3 UTR of Spike mRNA
ACE2

NMDA receptors

Hepatic acute response
ADAM17

3" UTR of ACE2

3 UTR of ACE2

NF-KB

5" UTR of viral NS mRNA
RISC complex

RISC complex

IL6R and RIG-I regulation

Vial nucleocapsid

EGF/IL-10

EGF/IL-10

D-dimer

MAPK, NF-KB

Target IRAK1/TRAF6

Viral ORF1a, E, S, and M mRNAs
Blocks viral Nsp10

Viral spike mRNA

SOCS1 expression regulation
IFN signalling
APP/CALM1/CAV1/CBL
TMPRSS2

ACE2

ITGB1

ACE2

DICER/VFGFA/NGFD
DICER/VFGFA/VGFD
FOXP3/CCL20/IL-17/Th-17

Cellular pathway(s)

Cell cycle, cell survival, proliferation
Cell cycle, cell survival, proliferation
Cell cycle, cell survival, proliferation
Virus-TMPRSS2 binding activation
Cell cycle, cell survival, proliferation
Cell cycle, cell survival, proliferation
Immune responses

Viral protein interactions
Virus-ACE2 binding

anti-NMDA receptor encephalitis
Inflammation

Viral replication/life cycle
Virus-ACE2-TMPRSS2 binding
Virus-ACE2 binding

INF-B pathway

Viral proteins interactions

PTM silencing of SARS CoV-2

PTM silencing of SARS CoV-2
Immune responses

Viral protein interactions
Virus-ACE2-TMPRSS2 binding
Immune response

Immune response

Immune response

Thrombosis

Inflammation, Jak/STAT

Immune responses

Viral protein interactions

Immune responses, apoptosis

Viral protein interactions
Virus-ACE2-TMPRSS2 binding
Immune responses

Thrombosis

Virus-TMPRSS2 binding
Virus-ACE2 binding

Viral replication/life cycle
Virus-ACE2 binding

ACE2 expression

ACE2 expression

Immune responses

(Continues)
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TABLE 3 (Continued)

MiRNA Inf vs C
miR-197-3p Up
miR-199a-3p Down
miR-199b-3p Down
miR-199b-5p Up
miR-19a-3p Up
miR-20a-5p Down
miR-21 Up
miR-223-3p Down
miR-223-5p Up
miR-24-3p Down
miR-26a-1-3p Down
miR-27a-3p Up
miR-27b-3p Up
miR-27b-5p Up
miR-29b-2-5p Down
miR-3143 Up
miR-31-5p Up
miR-320a-3p Up
miR-320b Up
miR-320c Up
miR-320d Up
miR-320e Up
miR-326 Up
miR-328-3p Down
miR-331-3p Up
miR-340-5p Down
miR-342-3p Down
miR-342-5p Down
miR-3613-5p Down
miR-361-3p Up
miR-374a-5p Down
miR-423-5p Up
miR-451a Up
miR-454-3p Down
miR-454-5p Up
miR-4659a-3p Up
miR-4685-3p Up
miR-548d-5p Up
miR-659-5p Down
miR-6741-3p Up

SvsC
Up
Down
Down
Down
Down
Down
Up
Down
Down
Down
Up
Down
NA
Up
Up
Down
Down
NA
Up
NA
NA
Up
Up
Up
Up
Down
Down
Down
Down
Down
Down
Up
Down
Down
Down
NA
NA
Down
Down

Up

Potential target(s)
ACE2
ACE2/TMPRSS2
ACE2/TMPRSS2
ACE2/TMPRSS2
TGFB

TL4/TXNIP/TNF/CCL2/CXCL9/IL10

MAPK, NF-KB
STMN1

STMN1

Spike mRNA
PGE2/COX-2
ALB/CAV1/COL1A1

PPRS regulation

POU2F2

RISC complex

TNFa

CRP, IL-6, D-dimer
CRP, IL-6, D-dimer
CRP, IL-6, D-dimer
CRP, IL-6, D-dimer
CRP, IL-6, D-dimer
CEBPA regulation
Suppresses type | interferon
HER2/P13-AKT/ERK1/2
MAP3K2/MAPK/ERK
Nucleocapsid
Nucleocapsid

TGFB Signalling

P53

CCL2

Cytokine/chemokine synthesis

TGFB2

TGFp2

ZBTB16
SP1

ACE2

Cellular pathway(s)
Virus-ACE2 binding

Viral replication

Viral replication

Viral replication

Immune response
Inflammation

Inflammation, Jak/STAT

Viral replication

Viral replication

Immune response
Inflammation

Thrombosis
Virus-ACE2-TMPRSS2 binding
Virus-ACE2-TMPRSS2 binding
Inflammation

PTM silencing of SARS CoV-2
Inflammation

Inflammation

Inflammation

Inflammation

Inflammation

Inflammation

Inflammation

Immune responses

Apoptosis

Immune response, cell migration
Viral proteins interactions
Viral proteins interactions
Regulate FGF2/VCAM1
Apoptosis

Immune responses

Immune responses

Immune responses

Immune responses

Immune responses

Immune responses

Immune responses

Immune response, apoptosis
Viral proteins interactions

Virus-ACE2 binding
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TABLE 3 (Continued)

MiRNA Inf vs C Svs C Potential target(s) Cellular pathway(s)
miR-760 Up Up Immune responses
miR-769-5p Up Down 3’ UTR of ACE2 Virus-ACE2 binding
miR-885-5p Up Down 3’ UTR of S protein, D-dimer Blocks viral entry, thrombosis
miR-93-5p Up Down ACE2 Virus-ACE2 binding
miR-98-3p Up Up 3’ UTR of TMPRSS Virus-TMPRSS2 binding
miR-99a-5p Down Down PTEN/AKT/mTOR Autophagy
miR-99b-3p Up Up PTEN/AKT/mTOR Autophagy
Abbreviations: IFN, interferon; Inf vs C, Infected versus Control; S vs C, Severe versus Control.
MO vs MI
miR-937-3p miR<628-5p
<RI miR-450a-2-3p P
MOvs C miR-182-5p miR- iy 3h-3p ( )
< < —_miR328-3p- P miR 5010 -3p . \Ks _VSC
R uusssa
miR- miR- 140-3p R-1 25.3 <m S Z
v g = miR-199a-5p
n‘g.—lp 1 miR-320b
SR vs DS‘ -3p.
. m|R~22‘3 et-7a-3p
RE vs Inf mlR-.»Sp \l}nf VS CJ "“R'””z'”mm-su-sp
“m T mir-gRsp
: ‘n\iR-15¥5p - mR-3633p ¢ | miR629-5p
miR-151a-3p  iR-18s- _miR-548k
miR-451a = 3 h—
ol @ miR-146a-3p Svs MO
S Vs MI s ) : e
iR h- MiR-1va-op
m . & miR-182:5p
miR-20a-5p s
S vs MO vs M|

FIGURE 6 Network analysis showing differentially expressed miRNAs in various disease stages after SARS-CoV-2 infection. The red and
green connecting lines (edges) show up- or down-regulation of miRNAs reported from each study. The highlighted red or green octagon boxes
highlight either up- or down-regulated miRNAs from various disease groups with the similar trend. The remaining miRNAs show altered
expression in the subsequent disease groups. C, control uninfected; MI, mild; MO, moderate; S, sever; RE, recovered; SR, survived; DS,

deceased.

reliably and effectively predict disease prognosis, especially consid-
ering that COVID-19 patients can quickly take a turn for the worse
and come down with severe disease with a considerably high rate of
mortality.

There is convincing evidence that miRNA spectrum and
expression levels are dependent upon the functional state of the

body and a change in their expression may reflect different stages

of disease condition(s). SARS-CoV-2-infected patients may or may
not develop COVID-19, with their symptoms ranging from being
asymptomatic at one end of the spectrum to developing from mild,
to moderate, to severe disease. The severe patients could exhibit
critical symptoms requiring mechanical ventilation or other type of
aids to remain alive. There are 24 studies that were included in this

review which investigated any change in miRNA expression in
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FIGURE 7 Heatmap of significantly up- or down-regulated 71 miRNAs in different stages of disease severity. (a) Forty-eight miRNA
showing similar trends within the individual group. (b) Twenty-three miRNAs showing altered expression within the individual group. The
boxes with multiple “Us and Ds” depict the appearance of any miRNA expression from various studies. The abbreviations “U” and “D”
represent the up- and down-regulated miRNAs, respectively. Boxes become darker when more studies with similar dysregulation were

observed for any miRNA.

SARS-CoV-2 infected patients. A few of them also sub-staged the
disease severity and tested their findings in a validation cohort,
whereas, the remaining studies tested the change of miRNA
expression in the presence of other diseases in SARS-CoV-2
infected patients.

The overall goal of this study was to find miRNAs that could act
as biomarkers in SARS-CoV-2-infected patients, especially to

differentiate between disease stage/severity. Although we found
many miRNAs that were reported in multiple studies, we chose the
ones with consistent expression profiles across studies. Our efforts
identified 40 miRNAs that were differentially-regulated in SARS-
CoV-2 infected patients compared to healthy controls (Figure 3).
The frequently reported up-regulated miRNAs included miR-1299,
miR-15a-5p, miR-27b-3p, miR-320b, and miR-320c, while the
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TABLE 4 MiRNAs expressed due to

Expression  Reference

Study Group

Martinez-Fleta et al., 20212  CAP vs COVID-19
Martinez-Fleta et al., 20212  CAP vs COVID-19
Martinez-Fleta et al., 20212  CAP vs COVID-19
Martinez-Fleta et al., 2021°2  CAP vs COVID-19
Martinez-Fleta et al., 20212  CAP vs COVID-19

McDonald et al., 2021%° Common cold vs COVID-19

Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*
Mi et al., 2021%*

Mi et al, 2021%*

Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture
Fractured vs no fracture

Fractured vs no fracture

the presence of co-morbidities in MiRNAs

COVID-19 patients. miR-362-3p Up
miR-376a-3p Down
miR-382-5p Down
miR-451ab Up
miR-99b-5p Down
miR-2392 Down
miR-1247-5p  Up
miR-133b Down
miR-1-3p Down
miR-194-5p Down
miR-1973 Up
miR-200a-3p Up
miR-33b-3p Up
miR-365b-3p Up
miR-378e Up
miR-378f Up
miR-378g Up
miR-383-3p Down
miR-4485 Up
miR-4536-3p Up
miR-511-5p Up
miR-548qr-3p  Down
miR-5582-3p Down
miR-5699-3p  Up
miR-6859-5p Down
miR-146 Up
miR-146a Up
miR-150 Up
miR-190 Up
miR-21b Up
miR-23b Up
miR-28 Up
miR-29a Up
miR-346 Up
miR-92 Up

down-regulated miRNAs included miR-150-5p that could act as
possible biomarkers to distinguish infected from non-infected par-
ticipants. Furthermore, we identified those miRNAs that were
exclusively dysregulated during severe disease and found 18 up- and
44 down-regulated miRNAs in severe condition that showed oppo-

site expression in other disease stages (Figure 5). Of these, miR-15a-

Saulle et al., 2021%¢ Pregnant vs non-pregnant women

Saulle et al., 2021%¢ Pregnant vs non-pregnant women

Saulle et al,, 2021%¢ Pregnant vs non-pregnant women

Saulle et al., 2021%¢ Pregnant vs non-pregnant women

Saulle et al.,, 2021%¢ Pregnant vs non-pregnant women

Saulle et al., 2021%¢ Pregnant vs non-pregnant women

Saulle et al,, 2021%¢ Pregnant vs non-pregnant women

Saulle et al,, 2021%¢ Pregnant vs non-pregnant women

Saulle et al.,, 2021%¢ Pregnant vs non-pregnant women

Saulle et al,, 2021%¢ Pregnant vs non-pregnant women

5p and miR-31-5p appeared in most of the studies. The expression of
miR-15a-5p was up-regulated upon infection and gradually
decreased upon increasing disease severity; thus, having the poten-
tial to serve as a COVID-19 disease severity marker. However, it was
tricky to identify miRNA markers that could differentiate early-stage

patients with the patients that recovered.
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As miRNA expression is associated with disease progression, we
were also interested in identifying miRNAs that could distinguish
intermediate disease stages. Towards this end, we identified 71
miRNAs which appeared in more than 5 comparative disease severity
groups (Figures 6 and 7). Our analysis showed that the expression of
miR-320b, miR-18a-5p, miR-320c, miR-144-5p, miR-15a-5p, miR-
342-3p, miR-451a, and miR-548k was consistent during progres-
sion of disease severity. Interestingly, miR-150-5p was reported 12
times in seven comparative groups; however, its expression was not
consistent within groups. Similar findings were observed for miR-16-
2-3p, miR-1246, miR-142-5p, miR-185-5p, and miR-4662a-5p that
failed to show expression consistency within groups (Figures 6 and
7). Although most of the infected patients recovered fully, unfortu-
nately, a small minority could not bear the brunt of the disease and
died during the course of the infection. We found 10 unique miRNAs
that were only present in the deceased group, including: miR-145,
miR-17-p, miR-208a, miR-24, miR-422a, miR-499, miR-8061, miR-
885, miR-101-5p, and miR-132 3p. Thus, presence of these miR-
NAs may indicate a poor prognosis for patient survival. Of course,
this would need further validation.

As mentioned in the introduction, the biogenesis of miRNAs re-
sults into two strands (arms), namely 5p and 3p. Although most of the
studies observed concordant dysregulation of the targets by both
arms, there is much evidence where both arms oppositely regulate
their targets or result in distinct biological effects.2?6712 During the
course of analysis performed for this study, some studies identified
the 5p or 3p character of the miRNAs, while others did not that could
have resulted in different effects on their targets. To avoid this
conflict, we removed several frequently existing miRNAs (> five
times) from many groups. While these miRNAs were not included in
the downstream analysis, they still have their significance in disease
progression and include, miR-126, miR-150, miR-155, miR-17, miR-
21, miR-223, miR-29c, miR-3180, miR-320a, and miR-98. The
expression of miR-3180, miR-3180-3p, miR-3180-5p, miR-320a,
miR-320a-3p, miR-98, and miR-98-3p was upregulated in the infec-
ted patients among different groups (Table S7); whereas, the
expression of miR-223-3p, miR-29¢c-5p, and miR-98-5p was down-
regulated upon SARS-CoV-2 infection. The expression of miR-150-
5p and miR-155-5p was down-regulated in the Inf vs C group.
However, contradictory results were observed among other disease
sub-stages. The expression of different transcripts of the other
miRNAs remained inconsistent among disease groups.

We also found some studies where researchers reported signifi-
cant alteration of some miRNAs in SARS-CoV-2-infected patients
during the presence of other co-morbidities like influenza,
community-acquired pneumonia, diabetes, pregnancy, cerebrovascu-
lar disease, common cold, or bone fractures. We compared these re-
sults from other studies and identified five uniqgue miRNAs (miR-362-
3p, miR-376a-3p, miR-382-5p, miR-451ab, and miR-99b-5p) that
could differentiate community-acquired pneumonia from SARS-CoV-
2-infected patients and one miRNA (miR-2392) that could distinguish
common cold patients from SARS-CoV-2-infected patients. Further-

more, we identified 19 miRNAs that were uniquely dysregulated in

infected patients due to bone fractures and 10 miRNAs unique to
pregnant women only (Table 4). Thus, these identified miRNAs may
serve as promising candidates to differentiate between different in-
fections and diseased conditions or states. Furthermore, the molec-
ular mechanisms and pathways associated with these miRNAs could
be helpful in better understanding disease pathophysiology as well as
for the development of specific treatments.

4.1 | Current status of already proposed
biomarkers miRNAs in COVID-19

The published studies included in this review proposed multiple miR-
NAs as possible biomarkers and most of them were validated in the
secondary cohorts of the same study. We found that most of the
miRNAs detected in one study were either present in other studies or
had an opposite expression within the specific group. For example,
Akula et al, 2022 observed significant dysregulation of eight miRNAs
in infected patients; however, out of these, only miR-150-5p was re-
ported by others with identical expression trends. Therefore, miRNAs
reported once or not expressed in similar manners were removed from
further analysis. Table 5 signifies miRNAs that were reported in at
least two different studies and showed a consistent expression profile
across the studies. It also shows the tissue sample used for extraction
of the RNA and reports results (up or down) between different groups,
including Inf vs C, S vs C, S vs patients from other disease stages.
Based on this analysis, we highlighted 10 possible miRNAs as
COVID-19 biomarkers, showing consistent expression profile among
several studies (Table 6). Four of these were up-regulated (miR-193a-
5p, miR-320b, miR-423-5p, miR-6721-5p) and five were down-
regulated (miR-150-5p, miR-342-3p, miR-144-3p, miR-144-5p, miR-
29b-3p) during disease progression, whereas the expression of one
miRNA (miR-15a-5p) was down-regulated during the severe stage.
Most of these miRNAs were associated with host-immune response
after infection or the virus itself. MiR-193a-5p has been found to
regulate TOMMY7O0 receptor and it is possible that this miRNA may be
associated with SARS-CoV-2 life cycle during its pathogenesis.1%® Mir-
320 family has been well studied in COVID-19 pathogenesis and found
to be associated with TGF-B signalling pathway that may further
regulate pro-inflammatory and thromboembolic processes in infected
patients.””*2? Another up-regulated miRNA after infection was miR-
423-5p. This miRNA regulates MALAT1 expression and has been
found to induce survival and decrease metastases in mice model by
inhibiting  MALTA1-mediated proliferation, tumour growth and
metastasis.'° As this miRNA also induces apoptosis and autophagy in

cancer cells, 13!

it is possible that induced expression of miR-423-5p
after SARS-CoV-2 infection may help host to clear infected cells. We
also observed consistent up-regulation of miR-6721-5p in SARS-CoV-
2 infected patients. Although the exact role of this miRNA is not
known, putative target prediction showed that it may regulate cellular
transport. MiR-150-5p inhibits the viral structural protein Nsp10
expression and this suggests that decline in miR-150-5p may increase

COVID-19 disease severity by allowing SARS-CoV-2 infection.®’
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TABLE 5 Potential miRNA biomarkers detected consistently in at least two studies.

Study

Tissue
sample

Disease stages

MiRNAs detected

Up-regulated

MiRNAs detected in infected patients compared to healthy controls

Eichmeier et al,
20227%

Farr et al,
202272

Fayyad-Kazan
et al,
2021°7

Fernandez-
Pato et al,
20227°

de Gonzalo-
Calvo et al,
2021°°

Gutmann et al,
202278

Keikha et al,
2021¢®

Li et al, 20208°

Li et al, 20228

McDonald
et al,
202143

Nicoletti et al,
202282

Saulle et al,
2021%¢

Wu et al,
202283

Nasal Swab

Plasma

Plasma

Plasma

Plasma

Plasma

Serum

Serum

Whole blood

Plasma
andNasal
Swab

Plasma

Plasma/
Placenta

Nasal Swab

InfvsC (n=1)

Infvs C (n = 13)

Infvs C (n=4)

Inf vs C (n = 30)

InfvsC(n=1)

Inf vs C (n = 15)

InfvsC(n=1)
InfvsC(n=7)
InfvsC(h=1)
InfvsC(n=1)
Infvs C(n=9)
Infvs C (n=7)
InfvsC(n=7)

miR-21

miR-103a-3p, miR-1290, miR-148a-3p, miR-
193a-5p, miR-19a-3p, miR-320a-3p, miR-
320b, miR-320c, miR-423-5p, miR-6721-
5p

miR-140-3p, miR-15a-5p, miR-194-5p, miR-
19a-3p

let-7a-3p, miR-10399-3p, miR-103a-3p, miR-
1246, miR-125b-5p, miR-1290, miR-15a-
5p, miR-193a-5p, miR-194-5p, miR-22-3p,
miR-27b-3p, miR-320a-3p, miR-320b, miR-
320c, miR-320d, miR-423-5p, miR-4443,
miR-4659%a-3p, miR-4685-3p, miR-505-5p,
miR-574-3p, miR-6511a-3p, miR-6721-5p,
miR-6873-3p

miR-27b-3p

let-7a-3p, miR-1246, miR-1290, miR-148a-3p,
miR-15a-5p, miR-22-3p, miR-27b-3p, miR-
574-3p

miR-10399-3p, miR-125b-5p, miR-4659a-3p,
miR-4685-3p, miR-505-5p

miR-6873-3p, miR-320b, miR-7111-3p, miR-
320c, miR-6511a-3p, miR-320d

miR-21

miR-140-3p, miR-186-5p, miR-320b, miR-
320c, miR-4443, miR-7111-3p

miRNAs detected in patients with severe disease compared to healthy controls

Akula et al,
2022°¢°

Chen et al,
20208

Plasma

Whole blood

SvsC(n=2)

SvsC (n=29)

miR-1226-3p, miR-1273h-5p, miR-1292-5p,
miR-1307-3p, miR-1538, miR-185-3p, miR-
210-5p, miR-3177-3p, miR-423-3p, miR-
671-3p, miR-6721-5p, miR-937-3p

Down-regulated

miR-1275, miR-145-3p, miR-150-5p

miR-1275, miR-146b-5p, miR-150-5p, miR-
328-3p, miR-342-3p, miR-487b-3p

miR-10a-5p, miR-145-3p, miR-150-5p, miR-
183-5p, miR-342-3p, miR-4433b-5p, miR-
487b-3p

miR-126-3p

miR-146b-5p, miR-183-5p

miR-150-5p

miR-10a-5p

miR-126-3p, miR-150-5p, miR-4433b-5p

miR-328-3p

miR-150-5p, miR-375

miR-106b-5p, miR-150-5p, miR-375, miR-144-
3p, miR-144-5p, miR-15a-5p, miR-18a-5p,
miR-16-2-3p, miR-16-5p, miR-192-5p,
miR-20b-5p, miR-29b-3p, miR-31-5p miR-
32-5p, miR-624-5p, miR-7-5p, miR-95-3p

(Continues)
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TABLE 5 (Continued)

MiRNAs detected

Tissue
Study sample Disease stages Up-regulated
Tang et al, Whole blood SvsC (n=27)
20208¢

miR-1226-3p, miR-1273h-5p, miR-1292-5p,
miR-1307-3p, miR-1538, miR-185-3p, miR-
210-5p, miR-3177-3p, miR-423-3p, miR-
671-3p, miR-6721-5p, miR-937-3p

Down-regulated

miR-106b-5p, miR-144-3p, miR-144-5p, miR-
15a-5p, miR-16-2-3p, miR-16-5p, miR-
18a-5p, miR-192-5p, miR-20b-5p, miR-
29b-3p, miR-31-5p, miR-32-5p, miR-624-
5p, miR-7-5p, miR-95-3p

miRNAs detected in severe stage of COVID-19 compared to other disease stages

Garcia-Giralt Serum SvsMIl (n=7)
et al,

20227°

Grehl et al, Plasma Svs Ml (n=6) miR-320b

2021

Gutmann et al, Plasma SvsMl (n=1) miR-193a-5p

202278

Nicoletti et al, Plasma Svs Ml (n=6) -

202282

Fernandez- Plasma Svs MO (n = 4)
Pato et al,

202278

629-5p

Gutmann et al, Plasma SvsMO (nh=1) miR-182-5p

202278

Tang et al, Whole blood S vs MO (n=5)

20208¢

miR-193a-5p, miR-320b

miR-144-3p, miR-144-5p, miR-29b-3p, miR-
342-3p, miR-451a, miR-96-5p

miR-144-5p, miR-29b-3p, miR-363-3p, miR-

451a

miR-144-3p, miR-144-5p, miR-342-3p miR-
363-3p, miR-451a, miR-96-5p

miR-185-5p, miR-423-5p, miR-584-5p, miR- -

miR-182-5p, miR-185-5p, miR-423-5p, miR-
584-5p, miR-629-5p

Abbreviations: Inf vs C, Infected versus Control; S vs C, Severe versus Control; S vs Ml, Severe versus Mild; S vs MO, Severe versus Moderate.

TABLE 6 MiRNAs with consistent expression profiles in different disease stages of SARS-CoV-2 infection.

Expression
MiRNA Potential target Pathway Inf vs C MO vs C SvsC S vs MI S vs MO
miR-193a-5p TOMMY0 receptor Transportation Up Up Up
miR-320b TGFB Immune response Up Up Up
miR-423-5p MALAT1 expression Tumour suppressor Up Up Up
miR-6721-5p Cellular transport Immune response Up Up
miR-15a-5p mTOR signalling Up Down
miR-150-5p Nsp 10 Viral replication, apoptosis Down Down
miR-342-3p Nucleocapsid Viral replication; immune response Down Down Down Down
miR-144-3p Cytokines Immune response Down Down Down Down
miR-144-5p Cytokines Immune response Down Down Down Down
miR-29b-3p Inflammation, IL-8 Immune response Down Down Down Down

Abbreviations: Inf vs C, Infected versus Control; MO vs C, Moderate versus Control; S vs C, Severe versus Control; S vs MI, Severe versus Mild; S vs MO,

Severe versus Moderate.

Interestingly, treatment with the anti-inflammatory drug “simvastatin”
induced miR-150-5p levels and decreased disease severity in SARS-
CoV-2 infected patients, supporting this hypothesis.1*2

We also observed a consistent down-regulation of miR-342-5p
that is mainly involved in inflammatory stimulation of macro-
phages.'®2 Targeting analysis showed that this miRNA might be able

to target SARS-CoV-2 nucleocapsid, ORFlab, and ORF3a domains
and thus may be involved in regulating virus replication.t®* There is
evidence that decreased miR-144 levels could indicate compromised
immune response and could be used as a biomarker to predict
COVID-19 disease severity and mortality.'°* Decreased expression
of miR-29b-3p is associated with airway inflammation and regulate
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inflammatory cytokine IL-8 expression.?®>> Down-regulated expres-
sion of miR-29b-3p might be a biomarker of disease severity in SARS-
CoV-2 infection.’®> We found miR-15a-5p as a suitable biomarker to
distinguish severe stage from others during SARS-CoV-2 infection.
Down-regulation of miR-15a-5p may be a sign of uncontrolled
immune-thrombosis and/or thrombo-inflammation.**¢ A current
study by Wu et al suggests that down-regulated expression of miR-
15a-5p could induce/activate interferon-1 signalling pathway to
overcome SARS-CoV-2 severity.'® Overall, if these miRNAs
continue to show consistent expression in future studies, these could
be considered as possible biomarkers in COVID-19 prognosis.
Meanwhile, targeting these miRNAs may be helpful to create future
therapies against SARS-CoV-2 infection.

5 | CONCLUSIONS

In this systematic review, we were able to identify miRNAs from
published literature that not only distinguished infected patients from
healthy controls, but also were able to discriminate stages of disease
severity, poor disease prognosis, and even death. These miRNAs
showed consistent expressions within groups and can potentially be
used as possible biomarkers. Furthermore, we also identified unique
miRNAs associated with patients with specific co-morbidities.
Although any change in the expression of these miRNAs could be used
as specific biomarkers of SARS-CoV-2 infection, COVID-19 disease
progression, and mortality, further validation is needed. Considering
that SARS-CoV-2 has become endemic in the human population and is
here to stay, the emergence of new SARS-CoV-2 variants with
pandemic potential exists. Thus, this study offers a valuable addition
to the literature towards the identification of miRNA-based bio-
markers that could eventually be used in the development of miRNA-
based antivirals and therapeutics for COVID-19.

5.1 | Limitations and future perspectives

In this review, we included only those studies originating from human
patients with the hope that our effort will help identify a list of miRNAs
that could be used as potential biomarkers in SARS-CoV-2 infected
patients as prognostic markers. The results extracted from these
studies needs proper validation as we found vast differences in miRNA
expression profiles within same groups between studies. It is not
surprising that validated biomarkers in one study might not be the
same as those in another study conducted elsewhere since ethnicity,
gender, age, presence of co-morbidities, effect of medications taken
for such co-morbidities, types of COVID-19 treatments and vaccines
taken, and other environmental factors (such as the strain of SARS-
CoV-2) may influence miRNAs expression profiles in COVID-19 pa-
tients. We anticipate that data gathered from other in vitro, in vivo, or
in silico studies as well as future studies in humans could help confirm
some of these miRNAs as biomarkers and/or clarify the mechanistic
aspects of the function of the identified miRNAs.
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