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Abstract

Severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) is responsible for

coronavirus disease of 2019 (COVID‐19) that infected more than 760 million people
worldwide with over 6.8 million deaths to date. COVID‐19 is one of the most

challenging diseases of our times due to the nature of its spread, its effect on

multiple organs, and an inability to predict disease prognosis, ranging from being

completely asymptomatic to death. Upon infection, SARS‐CoV‐2 alters the host

immune response by changing host‐transcriptional machinery. MicroRNAs (miRNAs)

are regarded as post‐transcriptional regulators of gene expression that can be

perturbed by invading viruses. Several in vitro and in vivo studies have reported

such dysregulation of host miRNA expression upon SARS‐CoV‐2 infection. Some of

this could occur as an anti‐viral response of the host to the viral infection. Viruses

themselves can counteract that response by mounting their own pro‐viral response
that facilitates virus infection, an aspect which may cause pathogenesis. Thus,

miRNAs could serve as possible disease biomarkers in infected people. In the cur-

rent review, we have summarised and analysed the existing data about miRNA

dysregulation in patients infected with SARS‐CoV‐2 to determine their concordance
between studies, and identified those that could serve as potential biomarkers

during infection, disease progression, and death, even in people with other co‐
morbidities. Having such biomarkers can be vital in not only predicting COVID‐19
prognosis, but also the development of novel miRNA‐based anti‐virals and
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therapeutics which can become invaluable in case of the emergence of new viral

variants with pandemic potential in the future.

K E YWORD S

biomarkers, COVID‐19, differential gene expression, disease progression, miRNAs, SARS‐
CoV‐2

1 | INTRODUCTION

It has been estimated that up to 1.5%–2% of the total human genome

transcribes protein‐coding RNAs (messenger or mRNAs), whereas

~28% transcribes non‐coding RNAs (ncRNAs).1 Until now, several

types of ncRNAs have been identified, including small interfering

RNAs, small nuclear RNAs, small nucleolar RNAs, microRNAs (miR-

NAs), long non‐coding (lnc) RNAs, and circular (circ) RNAs. Among

these, miRNAs are a class of single‐stranded non‐coding RNAs which
are ~20–25 nucleotide (nt) long.2 These miRNAs are critically

involved in regulating mRNA gene expression and any dysregulation

in their expression affects post‐transcriptional gene expression that

can significantly change cellular biological processes. In general,

miRNAs alter gene expression after binding to miRNA response el-

ements (MREs) that are primarily observed within the 30‐untrans-
lated regions (30 UTRs) of the target mRNAs.3 miRNAs generally act

as negative gene regulators and their binding to MREs results in

translation repression of the target mRNAs or its complete

degradation.

1.1 | MiRNA biogenesis

Most cellular and viral miRNAs are initially produced as primary (pri)‐
RNAs hundreds to thousands of nucleotides long with at least one or

more ~80 nt stem loop structure(s).4–7 Over one‐third of human

miRNAs exist in clusters and transcribed as “polycistronic RNAs.”

Synthesised in the nucleus by RNA polymerase II that also tran-

scribes other cellular genes, miRNAs are capped and polyadenylated

like cellular mRNAs.6,8 This is followed by processing of these pri‐
miRNAs into ~65–70 nt long pre‐miRNA with 2 nt overhangs at

the 30 end by the Microprocessor Complex that comprises of the

nuclear RNase III enzyme Drosha and its cofactor, Pasha/DiGeorge

Syndrome Critical 8.9 This processing maintains the imperfect stem

loop structures and these partially processed substrates are then

exported to the cytoplasm by the RAN‐GTP transporter, Exportin‐5.
Once in the cytoplasm, they are further processed by another RNase

III enzyme, Dicer, with the help of transactivation‐responsive RNA‐
binding protein, which binds to dsRNA, which removes the loop

part of the hairpin.9,10 Now fully mature and ~21–24 nts in length,

the miRNAs resemble siRNAs of the RNA interference pathway. Each

duplex miRNA leads to the generation of two mature miRNA strands

termed 5p or 3p, depending upon their location in the pre‐miRNA
relative to its 50 end. Either miRNA strand can be loaded onto the

RNA‐induced Silencing Complex (RISC) as the “guide” strand for

silencing of the target mRNA by the slicer protein, Argonaute (Ago),

while the other “passenger” strand is degraded.11 The cellular envi-

ronment or cell type predominantly determines strand selection

which could either be 5p or 3p exclusively, or either one equally.8 A

single miRNA can target mRNA transcripts with complementary se-

quences that can number in hundreds. If the complementarity is

perfect between the two molecules, the mRNA is degraded (as hap-

pens mostly in plants), while if there is imperfect base pairing, the

mRNA undergoes translational inhibition, as is observed mostly in the

animal cells.12

1.2 | Mechanism of miRNA action

MiRNAs inhibit gene expression post‐transcriptionally in many ways.
They can remove the cap structures at the 50 end of the transcripts,

deadenylate the poly A tail at the 30 end of the transcripts, inhibit

function of ribosome during translation, or degrade the transcript

itself.7,13 Unique to yeast cells, RNA‐mediated inhibition of gene

expression can happen at the level of chromatin as well by the

interaction of the miRNA with the “RNA‐induce Transcriptional

Silencing (RITS) complex.14 In the animal cells, miRNAs function

primarily by binding through incomplete complementarity with the

target sequence at the 30 UTR of the mRNAs, leading to inhibition of

translation via RISC. miRNAs act by binding to and silencing target

mRNAs through base pairing between a group of “seed sequences,”

the primary determinants of mRNA target recognition in miRNAs.15

These are located between nts 2‐8 at the 50 end of the miRNA that

interact with complementary seed sequences (MREs) found within

the 30 UTR of target genes. Other than the 30 UTR, regions such as

the 50 UTR, the promoter region, as well as the coding region of

target genes have also been observed to be targeted by miRNAs.8,15

1.3 | MiRNAs in SARS‐CoV‐2

Soon after the discovery of miRNAs in 1993 and their subsequent

role in mRNA expression, several studies focussed their attention on

elucidating the mode(s) of miRNA biogenesis and function.16 Ad-

vancements in gene expression analysis made it easy to detect any

change in an organism's miRNA expression between control and

compromised samples. The recent coronavirus disease 2019

(COVID‐19) pandemic caused by severe acute respiratory syndrome
coronavirus‐2 (SARS‐CoV‐2) has resulted in more than 6.8 million

deaths globally so far (https://covid19.who.int/). It is evident that
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upon infection, viruses hijack host immune system to not only facil-

itate their replication, but also disable the immune response against

the virus.17,18 To ease their entry and invade host‐immune system,

SARS‐CoV‐2 has also been found to change transcriptional profile of
numerous pathways associated with host‐cell‐defence mechanisms.19

Recent studies have found that upon infection, SARS‐CoV‐2 signifi-

cantly alters multiple cellular pathways in several human organs,

including heart, lungs, liver, and kidneys.20

In most of the organs, SARS‐CoV‐2 infection results in destabi-

lisation of the host cellular immune response and release of proin-

flammatory cytokines, dysregulated production of inflammatory cells,

endothelial dysfunction, and coagulation abnormalities (Table 1).20–43

It has been long known that upon infection, host cells produce

miRNAs to counter viral attacks by regulating the host‐immune
response.44,45 Moreover, viruses also transcribe miRNAs that may

interfere with the host‐cellular defence system.45 Since the start of

COVID‐19, several studies have investigated the possible dysregu-

lation of human miRNAs after SARS‐CoV‐2 infection in vivo, in vitro,
and in silico46–48 Initially, human miRNAs were predicted using

computer‐assisted techniques that were further validated through in
vivo or in vitro studies.48–50 In terms of miRNAs related to SARS‐
CoV‐2/COVID‐19, within a short span of only ~2 years, already

hundreds of studies have been published. In this systematic review,

we not only summarise the currently available data, but also analyse

the available data from patients to examine the performance of

currently enumerated miRNAs as biomarkers across the globe. Using

networking techniques and cluster analysis, we identify

experimentally‐verified miRNAs across the globe that may act as

possible disease markers for further COVID‐19 investigations.

2 | METHODS

2.1 | Data collection

Most of the existing reviews on the role of miRNAs in COVID‐19
have summarised the current available data based on dysregulated

miRNAs either predicted using in silico techniques or observed

experimentally in vivo or in vitro studies. To be considered as a valid

biomarker, miRNAs should possess the same expression profiles

under certain disease conditions. Unfortunately, none of the recent

reviews cross‐checked the existing data to validate the specificity of
the current proposed biomarkers except for a review from Moatar

et al51 who predicted and grouped possible miRNA targets and

associated pathways after SARS‐CoV‐2 infection reported in a few

studies using human patients. In the current review, we only focussed

on the miRNA expression results from the studies originating

through analysis of human patients enrolled in different healthcare

facilities during the pandemic and excluded all other in silico, in vitro

and in vivo studies. We did this to ensure that our predicted targets

reflected real life scenario. Figure 1 describes the data‐search
strategy and inclusion‐exclusion criteria used in our study. The data

included in this review was searched through the PubMed database

ranging from December 2020 to November 2022 using words

“COVID‐19, SARS‐CoV‐2, miRNA”. We also searched other associ-

ated databases like Google (https://www.google.com/), Google

Scholar (https://scholar.google.com/), ScienceDirect (https://www.

sciencedirect.com/) and PubMed Central (https://www.ncbi.nlm.nih.

gov/pmc/) to ensure the inclusion of most of the current data. This

data was crossed‐matched to the data available in PubMed, and most

of the data searched on other databases was also available in

PubMed.

2.2 | Network analysis

As we were interested in miRNAs expressed at various stages of

disease progression, we constructed disease stage‐specific miRNAs

interactions and their interacting networks using Cytoscape v.

3.9.1.52 Briefly, miRNA lists were constructed from the given litera-

ture and grouped based upon disease severity. Healthy controls were

designated as “controls” whereas infected patients were grouped into

asymptomatic (ASM), mild (MI), moderate (MO), severe (S), critical

(Crit) and others, as per the study. Where the authors did not further

sub‐group the disease severity, data was named as “infected”. miRNA
interaction networks were created with either overlapping miRNAs

in different disease groups or among authors representing their data

in similar disease groups. These interacting networks helped to sort

out miRNAs that have been identified in various studies under par-

allel disease conditions.

2.3 | MiRNA selection criteria

The miRNAs included within this study were selected based on the

differentially expressed genes (DEGs) between the healthy controls

and infected group or between groups representing different disease

stages specified earlier. We included all the miRNAs considered as

DEGs by their publishing authors. While comparing miRNA expres-

sion, we found multiple miRNAs expressed commonly in various

disease stages based on disease severity (mild, moderate, or severe).

In this scenario, we chose only those miRNAs that were represented

in at least 5 or more comparative groups to limit overcrowding. We

also removed miRNAs showing opposite expression in the same

group or the miRNA not specifying the 3p or 5p strand position. For

example, if any study described miR‐150 as a dysregulated miRNA

and another study mentioned miR‐150‐5p, both of these miRNAs

were not considered the same and excluded. Furthermore, we

removed one‐time expressing miRNAs in any group during network

construction.

2.4 | Clinical data selection

Most of the selected studies shared both demographic and clinical

data from the patients. However, for the sake of simplicity and
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TAB L E 1 Associated cellular pathways and manifestations in different human organs after SARS‐CoV‐2 infection.

Organ(s) Principle cellular pathways involved

Organ failure during SARS‐CoV‐2
infectionYes/No/Not applicable References

Lung ACE2 pathway dysregulation Yes, lung failure (~5%) 20,22,24,37

Acute respiratory distress syndrome (ARDS)

Interstitial inflammation

Immune response (circulating proinflammatory cytokine

and chemokine upregulation, including tumour necrosis

factor‐α and interleukin 1β), hemophagocytosis
(macrophage activation syndrome), immune

suppression (lymphopenia), Hypoxia

Diffused pulmonary intravascular coagulopathy

TGFβ signalling

Oxidative stress

Pyruvate metabolism

Neutrophil extracellular trap (NET) formation

Kidneys ACE2 pathway dysregulation Yes, acute kidney injury (~5%) 20,26,28,38

High ACE2, TMPRSS2 and CTSL levels

Systematic inflammatory response

High cytokines/chemokines levels

Dysregulated renal hemodynamics

Induced MAPK and STAT3 pathways

Induced senescence‐associated secretory phenotype

Induced interferon α/β pathway

Reduced collagen biosynthesis and integrin cell surface

interactions

Induced ROS generation

Blood Lymphopenia Venous thromboembolism (~10%) 20,29,34

Induces inflammatory markers

Cytokine storm

Lymphocyte's apoptosis

Systematic thrombocytopaenia

Endothelial barrier disruption/dysfunction

Blood hypercoagulability

Type I interferon

VEGFA/Ang/Tie2 pathways

Skin Purpuric eruptions Skin abnormalities (~20%) 20,36,40,43

Livedo reticularis

Retiform purpura

Skin micro‐thrombosis

Induce macrophagy

Induce inflammatory markers

TGFβ signalling

Cyclic GMP‐AMP (cGAS‐STING) pathway
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T A B L E 1 (Continued)

Organ(s) Principle cellular pathways involved

Organ failure during SARS‐CoV‐2
infectionYes/No/Not applicable References

Brain, nervous

system

Skeletal muscle injury Not applicable 20,31,35,39

Peripheral neuropathy

Taste impairment

Nerve pain

Hyper inflammation

Metabolic dysregulation

Microglia activation

Infected olfactory neurons

Olfactory and gustatory sense dysfunctions

Guillain‐barre syndrome

Systematic neurological illness

Haemorrhagic and ischaemic strokes

Ocular manifestations

Conjunctival congestion, chemosis and epiphora

Matrix metalloproteinases (MMP) pathway

Neurofilament light chain pathway

Heart Upregulated ACE2 expression Yes, acute heart failure (~2.5%) in critical patients;

myocardial injury (~36%); vascular thrombosis (~16%)

20,27,30,41

Reduced angiotensin 1‐7 levels

Induced myocarditis/injury (induced ADAMTS13 levels)

Anti‐fibrinolytic response

Hyper inflammation, hypotension

Reduced oxygen supply

Ventricular arrhythmias

Macrophage activation syndrome

Induced Activin/TGFβ signalling

Induced biological ageing/senescence (SASP)

Gut ACE2 dysregulation in the ileum and colon Not applicable 20,23,33

Upper tract inflammation

GI tract epithelial cell apoptosis

Elevated AST/ALT/bilirubin levels

Hepatocyte apoptosis

Hypoxia

Endocytosis signalling pathway

Macrophage induced immune response

Endocrine High ACE2 expression on hypothalamic and pituitary

tissues

Not applicable 20,25,32,42

High cortisol levels

Degeneration and necrosis of adrenal gland

Electrolyte imbalance (hyponatremia and hypernatraemia)

Hypothyroidism
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consistency, we included only gender and age in our study which

were common to all studies.

2.5 | Data analysis and statistics

Demographic and clinical data was collected from each study and was

analysed using Microsoft Excel 2021 and IBM SPSS Statistics soft-

ware v.26. GraphPad Prism v. 9.0.0 (121) was used to create graphs

and analyse data among groups, wherever applicable.

3 | RESULTS

3.1 | MiRNA dysregulation in SARS‐CoV‐2‐infected
patients

The first step in this study was to collect suitable data. As we were

interested in miRNAs dysregulated after SAR‐CoV‐2 infection, we

found 349 research articles, 94 general reviews, and 4 systematic

reviews on this topic (Figure 1). Out of these, 145 articles and re-

views focussed on miRNAs in COVID‐19 progression. Out of these,

33 were in silico, 59 were in vivo, and 15 were in vitro studies along

with 38 reviews. Our preference was to include and analyse the data

extracted from human studies from patients enrolled in a health fa-

cility around the globe. We finalised and selected 35 studies that

reported dysregulation of host‐miRNAs following SARS‐CoV‐2
infection (Figure 1).

Collected data showed that of these, most of the studies were

published during the year 2021 (n = 16),53–68 followed by 2022

(n = 15),69–83 with the least numbers in the year 2020 (n = 4)53,84–87

(Figure 2a). Although the selected studies were published globally,

most of them were reported from China (n = 8), followed by Italy

(n = 7), Spain (n = 4), and USA (n = 3). Australia, Germany, Iran and

Turkey published two articles each. The remaining countries with one

study included Austria, Brazil, Czech Republic, Egypt, Israel, and

Lebanon (Figure 2b). The samples used for RNA extraction for miRNA

analysis included, plasma (n = 14), serum (n = 9), whole blood cells/

peripheral blood samples (n = 6), and nasopharyngeal swabs (n = 4).

One study took both plasma and nasopharyngeal samples, whereas

one study collected RNA from bones and one from placenta of

pregnant women infected with SARS‐CoV‐2 (Figure 2c). To deter-

mine changes in miRNA expression levels, 18 studies chose reverse

transcriptase quantitative PCR (RT‐qPCR), whereas 17 studies used

small RNA sequencing/next generation sequencing (NGS). RT‐qPCR
was the popular choice for validating the sequencing data. Only 7

studies used a study design with two cohorts, discovery and valida-

tion. Table 2 summarises the characteristics of the studies included in

this review, whereas Table S1 contains the raw data used in this

study.

3.2 | Demographic and clinical data analysis

Out of 35 studies, 30 mentioned participant ages, a mixed‐age range
from 3.5 to 93 years, while thirty‐one mentioned gender of the

F I GUR E 1 Study design. Literature search
strategy and exclusion and inclusion criteria

for this review.
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participants (Table 2). In all of these studies, the ethnicity of the

participants was not disclosed and a written consent form approved

from ethical committees was signed by each participant. In most of

the studies, infected patients after testing positive for COVID‐19
infection were further categorised into the following stages: (i)

mild, (ii) moderate, (iii) severe, (iv) critical, and (v) asymptomatic.

Other common stages were patients with or without mechanical

ventilation, recovered, or deceased. Mechanical ventilation was

defined as falling within the severe stage, intensive care unit patients

without ventilation as moderate, and asymptomatic as mild, in this

review. Some studies combined these stages as one group, as given in

Table 2. A few studies also examined the effect of co‐morbidities like
diabetes, cerebrovascular issues, pregnancy, common cold, influenza,

and bone fractures in infected patients.

3.3 | MiRNA dysregulation in “Inf vs C” studies

Our data showed that 13 studies53,54,56,57,66,70–72,80–83,85 compared

miRNA regulation in SARS‐CoV‐2 infected patients without further

sub‐staging of the disease severity, whereas 22 studies reported

their results as an overall and also in sub‐groups (Table 2). A total

of 404 miRNAs were reported in these studies that showed sig-

nificant dysregulation in infected patients. As we were interested in

those miRNAs that were reported in at least two studies, 70 miR-

NAs were selected from 16 studies53,55–57,63,66–68,71,73,78,79,81–83,85

to create an miRNA‐study network in infected (Inf) versus (vs)

control (C) patients. This network contains 86 nodes and 160 edges

with 3721 average number of neighbours (Figure 3a). The red or

green edges (connecting lines) represent up‐ or down‐regulation of

miRNAs in any study. We further filtered out 30 miRNAs which

showed inconsistent expression patterns within studies. The final

list for the present study contained 29 up‐regulated and 11 down‐
regulated miRNAs with consistent expression (Figure 3b, Table S2).

In the up‐regulated miRNAs, miR‐320b and miR‐320c appeared

in four studies, while miR‐1290, miR‐15a‐5p, and miR‐27b‐3p
appeared in three studies. In down‐regulated miRNAs, miR‐150‐5p
appeared in six studies.

3.4 | MiRNA dysregulation in “severe (S)” versus (vs)
“control (C)” studies

Review of current literature revealed that there were five

studies59,69,78,84,86 that compared miRNA expression in severely

infected patients with healthy controls. These also included studies

where authors combined two or more disease stages due to similar

miRNA expression trends. These five studies collectively reported

F I GUR E 2 Analysis of the publishing year, regions, RNA extraction methodology, and miRNA expression analysis platform used in the

studies included in this review. M, muscle; B, bone; BM, bone marrow; NPS, nasopharyngeal swabs; WBC, white blood cells.
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513 differentially‐regulated miRNAs. To construct a miRNA‐study
network, we selected 85 miRNAs that appeared in at least two of

the five studies. Furthermore, we had to remove two studies from the

network analysis since they showed no overlapping/common miR-

NAs. Thus, the network consisted of 88 nodes (85 common miRNAs

and three studies), 170 edges and 3864 average number of neigh-

bours (Figure 4). There were no shared miRNAs among the three

selected studies; however, Akula et al69 and Chen et al84 revealed

two shared miRNAs (miR‐375 and miR‐150‐5p) with suppressed

expression in severe disease when compared to uninfected in-

dividuals. We also observed 83 differentially‐regulated miRNAs that
were reported from Tang et al86 and Chen et al.84 While 12 and 15 of

the shared miRNAs from both studies showed the same expression

profile (up‐ or down‐regulation, respectively; Table S3); interestingly,
a majority of these shared miRNAs (67%; n = 56) showed an opposite

expression profile in these studies. This suggests the need for further

study of expression of these miRNAs in the severe group compared

to uninfected individuals since these results came from only three

studies.

3.5 | Unique miRNAs that distinguish “severe” from
“infected” patients

During data analysis, we observed that most of the differentially‐
regulated miRNAs found in the available data were not present in

all studies, filtering out many miRNAs that could have been of

importance. We were especially interested in those miRNAs that

could distinguish severe disease in infected patients without further

disease sub‐groupings like mild or moderate. To achieve this goal, we
first compared and removed those miRNAs from “Inf vs C” and “S vs

C” groups that showed opposite expression within the group from

various studies. Such a strategy removed 30 miRNAs from the “Inf vs

C” and 56 miRNAs from “S vs C” groups. The outcome was 156

miRNAs shared by both groups, meaning these miRNAs could be

used to distinguish patients with severe COVID‐19 from infected

individuals (Figure 5a, Table S4). Out of these 156 miRNAs, 51 were

up‐regulated and 43 were down‐regulated in both groups. The

remaining 62 miRNAs (Figure 5b) likely distinguish “severe” cases

from “non‐severe patients” due to their opposite expression in both

conditions (18 up‐regulated and 44‐down regulated miRNAs in se-

vere disease condition). Interestingly, from this list miR‐15a‐5p and

miR‐31‐5p appeared in two or more studies56,57,73,78,82,84,86 and

could potentially serve as biomarkers for disease severity. Table 3

summarises the targets and principle cellular pathways associated

with miRNAs regulated during Inf vs C and S vs C stages and cited

previously.46,56,73,88–120 Most of the miRNAs were involved in tar-

geting virus‐host interactions, viral replication, and host‐immune
responses.

3.6 | MiRNA expression analysis in all stages of
disease severity after SARS‐CoV‐2 infection

As mentioned earlier, most of the studies included in this review

either represented their miRNA dysregulation data as “Inf vs C”

(n = 13) or “S vs C” (n = 5) comparison. However, some of the studies

also further elaborated their results based on disease severity. To

F I GUR E 3 MiRNAs dysregulated after SARS‐CoV‐2 infection in “Infected versus Control” group. (a) miRNA Interaction network among
miRNAs published in literature, showing commonly found miRNAs from various studies. Cytoscape 3.9.1 was used to construct the network.

The red and green connecting lines (edges) show up‐ or down‐regulation of miRNAs reported from each study. (b) Heatmap of the 40
dysregulated miRNAs with consistent expression profile in infected patients. The red and green highlighted miRNAs represent the reported up
(U)‐ or down (D)‐regulated miRNAs, respectively, with the number of Us or Ds reflecting the intensity of dysregulation. See text for details.
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gain further insights into how miRNAs dysregulate after SARS‐CoV‐2
infection, we combined the data from all such studies (n = 23) and

constructed a network of “miRNA‐disease severity” to find abun-

dantly expressed miRNAs in literature since these miRNAs may be

able to distinguish disease severity in the infected patients. Towards

this end we combined the miRNAs from the following groups: “Inf vs

C”, “Severe/Moderate versus Control (S/MO vs C)”, “Severe versus

Moderate (S vsMO)”, “Moderate versus Control (MO vs C)”, “Survived

versus Deceased (SR vs DS)”, “Severe/Critical versus Mild/Moderate

(SC vs MM)”, “Severe versus Moderate versus Mild (S vs MO vs MI)”,

“Severe versus Mild (S vs MI)”, “Severe/Mild versus Control (S/MI vs

C)”, Severe versus Control (S vs C)” and “Recovered versus Infected

(RE vs Inf)”. Table S5 represents the summary of the total number of

reported miRNAs in different COVID‐19 severity stages. It should be
noted that most of the groups included in this network were reported

in only one or two studies: S/MO vs C,69 S vs MO,73,86 MO vs C,86 SR

vs DS,77 SC vs MM,61 S vs MO vs MI,78 MO vs MI,73 S vs MI,60,75,78,82

S/MI vs C,84 RE vs Inf81) except “Inf vs C” and “S vs C”. Initially, this

network contained 71 miRNAs from 23 studies. However, we

removed 23 miRNAs that showed opposite regulation in the same

group. The final network comprised of 48 miRNAs and 10 disease

stages from 17 studies (Figure 6; Table S5). This network consisted of

58 nodes, 273 edges and 8034 average number of neighbours.

Seventeen miRNAs in this network showed consistent expression in

the different disease groups of which 8 were up‐regulated (miR‐127‐
3h‐3p, miR‐1307‐3p, miR‐193‐5p, miR‐423‐5p, miR‐1292‐5p, miR‐
320c, miR‐1273h‐5p, and miR‐1290), and 9 were down‐regulated
(miR‐106b‐5p, miR‐342‐3p, miR‐548j‐3p, miR‐28‐5p, miR‐96‐5p,
miR‐144‐3p, miR‐144‐5p, miR‐146b‐5p, and miR‐29b‐3p) in the

infected samples. The remaining 31 showed altered expression in

distinct disease groups (Figure 6). A heatmap of these 48 miRNAs in

various studies showed that similar expression profile of many miR-

NAs was observed (Figure 7).

3.7 | MiRNA regulation in “deceased” versus
patients that “survived”

There were four studies55,59,74,77 that observed 47 differentially‐
regulated miRNAs in COVID‐19 patients that died versus that sur-

vived (Table S6). Interestingly, there were no overlapping/common

miRNAs observed among these studies. However, during compara-

tive analysis of these miRNAs with the ones observed among other

groups, we detected 10 unique down‐regulated miRNAs that were

only present in the deceased group: miR‐145, miR‐17‐p, miR‐208a,
miR‐24, miR‐422a, miR‐499, miR‐8061, miR‐885, miR‐101‐5p, and

F I GUR E 4 Dysregulation of miRNAs after SARS‐CoV‐2 infection in “Severe versus Control” group. The red and green lines connecting the
miRNAs (edges) show up (red)‐ or down (green)‐regulation of miRNAs reported from each study.
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miR‐132‐3p. In addition, we also observed up‐regulation of miR‐
1285‐5p and decreased expression of miR‐185‐3p, miR‐21, miR‐
323a‐3p, miR‐378f, and miR‐410‐3p in the deceased patients when

compared to the remaining SARS‐CoV‐2‐infected groups. These

miRNAs may be helpful in the further prognosis of infected patients

and their appearance may suggest deterioration of the patient, an

aspect that needs further investigation.

3.8 | MiRNA regulation in SARS‐CoV‐2 infected
patients with other co‐morbidities

Among the studies analysed, there were six studies62–67 that also

examined the role of other co‐morbidities and conditions in SARS‐
CoV‐2‐infected patients. These included patients with bone frac-

tures, community acquire pneumonia, common cold, diabetes, preg-

nancy, patients recovered from SARS‐CoV‐2 infection, and any

patient treated with Tocilizumab (TCZ). We found 110 miRNAs being

differentially‐regulated within these groups. First, we filtered out 14
miRNAs that appeared in more than one of these groups followed by

61 more miRNAs that were also present in infected patients only.

The remaining 35 miRNAs were unique and can potentially be

considered as being regulated owing to the presence of other con-

ditions in COVID‐19 infected patients (Table 4).

4 | DISCUSSION

MiRNAs have been reported as potential biomarkers in various dis-

eases, including COVID‐19, that may be able to differentiate disease
severity in SARS‐CoV‐2 infected patients. Any change in miRNAs

expression can depict the molecular modification(s) at the cellular

level as these non‐coding RNAs control the expression of genes

involved in the diverse cellular pathways.121 Due to their small

structure, miRNAs are more stable and reliable, and have a longer

half‐life in the collected samples.122 Although several diagnostic tests
are routinely performed to detect the viral infection, these tests have

limitations and are not able to predict the overall damage or next

stage of the disease or predict disease prognosis.123–125 These tests

included nasal swab or saliva samples for SARS‐CoV‐2 detection

using RT‐qPCR, serological tests based on SARS‐CoV‐2 antibodies,

including IgM and IgG, and tests for clinical markers, such as chest X‐
ray, changes in inflammatory, haematologic or biochemicals markers.

Thus, the need for COVID‐19‐specific biomarkers exists that should

F I GUR E 5 Possible miRNA as biomarkers that distinguish severe disease from mild or moderate. (a) Selection criteria for differentially‐
regulated miRNAs distinguishing severe disease cases from uninfected. Red boxes show up‐regulated while green boxes show down‐regulated
miRNAs. (b) Up‐ (U)‐ and down‐ (D) regulated miRNAs in severe condition. The red boxes show up‐regulated while green shows down‐
regulated miRNAs.

18 of 31 - AHMAD ET AL.

 10991654, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rm

v.2449 by C
ochraneU

nitedA
rabE

m
irates, W

iley O
nline L

ibrary on [06/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TAB L E 3 Differentially‐regulated miRNAs in infected and severe stage and their targets/pathways in SARS‐CoV‐2 infection.

MiRNA Inf vs C S vs C Potential target(s) Cellular pathway(s)

let‐7a‐3p Up Down STAT3, WNT, mTOR Cell cycle, cell survival, proliferation

let‐7b‐3p Up Up STAT3, WNT, mTOR Cell cycle, cell survival, proliferation

let‐7d‐3p Up Up STAT3, WNT, mTOR Cell cycle, cell survival, proliferation

let‐7e‐5p Up Down 30 UTR of TMPRSS Virus‐TMPRSS2 binding activation

let‐7f‐2‐3p Up Up STAT3, WNT, mTOR Cell cycle, cell survival, proliferation

let‐7g‐5p Down Down STAT3, WNT, mTOR Cell cycle, cell survival, proliferation

miR‐10399‐3p Up Down Immune responses

miR‐103a‐3p Up NA 30 UTR of Spike mRNA Viral protein interactions

miR‐106b‐5p Down Down ACE2 Virus‐ACE2 binding

miR‐107 Up Down NMDA receptors anti‐NMDA receptor encephalitis

miR‐122‐3p Up Down Hepatic acute response Inflammation

miR‐122‐5p Up Down ADAM17 Viral replication/life cycle

miR‐1246 Up Up 30 UTR of ACE2 Virus‐ACE2‐TMPRSS2 binding

miR‐125b‐5p Up Down 30 UTR of ACE2 Virus‐ACE2 binding

miR‐126‐3p Down Down NF‐Kβ INF‐β pathway

miR‐126‐5p Up Down 50 UTR of viral NS mRNA Viral proteins interactions

miR‐1273h‐3p Up Up RISC complex PTM silencing of SARS CoV‐2

miR‐1273h‐5p Up Up RISC complex PTM silencing of SARS CoV‐2

miR‐1287‐5p Up Down IL6R and RIG‐I regulation Immune responses

miR‐1301‐3p Up Up Vial nucleocapsid Viral protein interactions

miR‐132‐5p Down Down Virus‐ACE2‐TMPRSS2 binding

miR‐133a‐3p Up Up Immune response

miR‐144‐3p Down Down EGF/IL‐10 Immune response

miR‐144‐5p Down Down EGF/IL‐10 Immune response

miR‐145‐3p Down Down D‐dimer Thrombosis

miR‐146a‐5p Down Down MAPK, NF‐Kβ Inflammation, Jak/STAT

miR‐146b‐5p Down Down Target IRAK1/TRAF6 Immune responses

miR‐148a‐3p Up Down Viral ORF1a, E, S, and M mRNAs Viral protein interactions

miR‐150‐5p Down Down Blocks viral Nsp10 Immune responses, apoptosis

miR‐151a‐5p Up Up Viral spike mRNA Viral protein interactions

miR‐155‐5p Down Down SOCS1 expression regulation Virus‐ACE2‐TMPRSS2 binding

miR‐15a‐5p Up Down IFN signalling Immune responses

miR‐16‐5p Down Down APP/CALM1/CAV1/CBL Thrombosis

miR‐181a‐2‐3p Down Down TMPRSS2 Virus‐TMPRSS2 binding

miR‐181b‐5p Up Down ACE2 Virus‐ACE2 binding

miR‐183‐5p Down Down ITGB1 Viral replication/life cycle

miR‐185‐5p Up Down ACE2 Virus‐ACE2 binding

miR‐18a‐3p Down Up DICER/VFGFA/VGFD ACE2 expression

miR‐18a‐5p Down Down DICER/VFGFA/VGFD ACE2 expression

miR‐194‐5p Up NA FOXP3/CCL20/IL‐17/Th‐17 Immune responses

(Continues)
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T A B L E 3 (Continued)

MiRNA Inf vs C S vs C Potential target(s) Cellular pathway(s)

miR‐197‐3p Up Up ACE2 Virus‐ACE2 binding

miR‐199a‐3p Down Down ACE2/TMPRSS2 Viral replication

miR‐199b‐3p Down Down ACE2/TMPRSS2 Viral replication

miR‐199b‐5p Up Down ACE2/TMPRSS2 Viral replication

miR‐19a‐3p Up Down TGFβ Immune response

miR‐20a‐5p Down Down TL4/TXNIP/TNF/CCL2/CXCL9/IL10 Inflammation

miR‐21 Up Up MAPK, NF‐Kβ Inflammation, Jak/STAT

miR‐223‐3p Down Down STMN1 Viral replication

miR‐223‐5p Up Down STMN1 Viral replication

miR‐24‐3p Down Down Spike mRNA Immune response

miR‐26a‐1‐3p Down Up PGE2/COX‐2 Inflammation

miR‐27a‐3p Up Down ALB/CAV1/COL1A1 Thrombosis

miR‐27b‐3p Up NA PPRS regulation Virus‐ACE2‐TMPRSS2 binding

miR‐27b‐5p Up Up Virus‐ACE2‐TMPRSS2 binding

miR‐29b‐2‐5p Down Up POU2F2 Inflammation

miR‐3143 Up Down RISC complex PTM silencing of SARS CoV‐2

miR‐31‐5p Up Down TNFα Inflammation

miR‐320a‐3p Up NA CRP, IL‐6, D‐dimer Inflammation

miR‐320b Up Up CRP, IL‐6, D‐dimer Inflammation

miR‐320c Up NA CRP, IL‐6, D‐dimer Inflammation

miR‐320d Up NA CRP, IL‐6, D‐dimer Inflammation

miR‐320e Up Up CRP, IL‐6, D‐dimer Inflammation

miR‐326 Up Up CEBPA regulation Inflammation

miR‐328‐3p Down Up Suppresses type I interferon Immune responses

miR‐331‐3p Up Up HER2/PI3‐AKT/ERK1/2 Apoptosis

miR‐340‐5p Down Down MAP3K2/MAPK/ERK Immune response, cell migration

miR‐342‐3p Down Down Nucleocapsid Viral proteins interactions

miR‐342‐5p Down Down Nucleocapsid Viral proteins interactions

miR‐3613‐5p Down Down TGFβ Signalling Regulate FGF2/VCAM1

miR‐361‐3p Up Down P53 Apoptosis

miR‐374a‐5p Down Down CCL2 Immune responses

miR‐423‐5p Up Up Immune responses

miR‐451a Up Down Cytokine/chemokine synthesis Immune responses

miR‐454‐3p Down Down TGFβ2 Immune responses

miR‐454‐5p Up Down TGFβ2 Immune responses

miR‐4659a‐3p Up NA Immune responses

miR‐4685‐3p Up NA ZBTB16 Immune responses

miR‐548d‐5p Up Down SP1 Immune response, apoptosis

miR‐659‐5p Down Down Viral proteins interactions

miR‐6741‐3p Up Up ACE2 Virus‐ACE2 binding
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reliably and effectively predict disease prognosis, especially consid-

ering that COVID‐19 patients can quickly take a turn for the worse

and come down with severe disease with a considerably high rate of

mortality.

There is convincing evidence that miRNA spectrum and

expression levels are dependent upon the functional state of the

body and a change in their expression may reflect different stages

of disease condition(s). SARS‐CoV‐2‐infected patients may or may

not develop COVID‐19, with their symptoms ranging from being

asymptomatic at one end of the spectrum to developing from mild,

to moderate, to severe disease. The severe patients could exhibit

critical symptoms requiring mechanical ventilation or other type of

aids to remain alive. There are 24 studies that were included in this

review which investigated any change in miRNA expression in

T A B L E 3 (Continued)

MiRNA Inf vs C S vs C Potential target(s) Cellular pathway(s)

miR‐760 Up Up Immune responses

miR‐769‐5p Up Down 30 UTR of ACE2 Virus‐ACE2 binding

miR‐885‐5p Up Down 30 UTR of S protein, D‐dimer Blocks viral entry, thrombosis

miR‐93‐5p Up Down ACE2 Virus‐ACE2 binding

miR‐98‐3p Up Up 30 UTR of TMPRSS Virus‐TMPRSS2 binding

miR‐99a‐5p Down Down PTEN/AKT/mTOR Autophagy

miR‐99b‐3p Up Up PTEN/AKT/mTOR Autophagy

Abbreviations: IFN, interferon; Inf vs C, Infected versus Control; S vs C, Severe versus Control.

F I GUR E 6 Network analysis showing differentially expressed miRNAs in various disease stages after SARS‐CoV‐2 infection. The red and
green connecting lines (edges) show up‐ or down‐regulation of miRNAs reported from each study. The highlighted red or green octagon boxes
highlight either up‐ or down‐regulated miRNAs from various disease groups with the similar trend. The remaining miRNAs show altered

expression in the subsequent disease groups. C, control uninfected; MI, mild; MO, moderate; S, sever; RE, recovered; SR, survived; DS,
deceased.
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SARS‐CoV‐2 infected patients. A few of them also sub‐staged the

disease severity and tested their findings in a validation cohort,

whereas, the remaining studies tested the change of miRNA

expression in the presence of other diseases in SARS‐CoV‐2
infected patients.

The overall goal of this study was to find miRNAs that could act

as biomarkers in SARS‐CoV‐2‐infected patients, especially to

differentiate between disease stage/severity. Although we found

many miRNAs that were reported in multiple studies, we chose the

ones with consistent expression profiles across studies. Our efforts

identified 40 miRNAs that were differentially‐regulated in SARS‐
CoV‐2 infected patients compared to healthy controls (Figure 3).

The frequently reported up‐regulated miRNAs included miR‐1299,
miR‐15a‐5p, miR‐27b‐3p, miR‐320b, and miR‐320c, while the

F I GUR E 7 Heatmap of significantly up‐ or down‐regulated 71 miRNAs in different stages of disease severity. (a) Forty‐eight miRNA
showing similar trends within the individual group. (b) Twenty‐three miRNAs showing altered expression within the individual group. The

boxes with multiple “Us and Ds” depict the appearance of any miRNA expression from various studies. The abbreviations “U” and “D”
represent the up‐ and down‐regulated miRNAs, respectively. Boxes become darker when more studies with similar dysregulation were
observed for any miRNA.
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down‐regulated miRNAs included miR‐150‐5p that could act as

possible biomarkers to distinguish infected from non‐infected par-

ticipants. Furthermore, we identified those miRNAs that were

exclusively dysregulated during severe disease and found 18 up‐ and
44 down‐regulated miRNAs in severe condition that showed oppo-

site expression in other disease stages (Figure 5). Of these, miR‐15a‐

5p and miR‐31‐5p appeared in most of the studies. The expression of
miR‐15a‐5p was up‐regulated upon infection and gradually

decreased upon increasing disease severity; thus, having the poten-

tial to serve as a COVID‐19 disease severity marker. However, it was
tricky to identify miRNA markers that could differentiate early‐stage
patients with the patients that recovered.

TAB L E 4 MiRNAs expressed due to
the presence of co‐morbidities in
COVID‐19 patients.

MiRNAs Expression Reference Study Group

miR‐362‐3p Up Martinez‐Fleta et al., 202162 CAP vs COVID‐19

miR‐376a‐3p Down Martinez‐Fleta et al., 202162 CAP vs COVID‐19

miR‐382‐5p Down Martinez‐Fleta et al., 202162 CAP vs COVID‐19

miR‐451ab Up Martinez‐Fleta et al., 202162 CAP vs COVID‐19

miR‐99b‐5p Down Martinez‐Fleta et al., 202162 CAP vs COVID‐19

miR‐2392 Down McDonald et al., 202163 Common cold vs COVID‐19

miR‐1247‐5p Up Mi et al., 202164 Fractured vs no fracture

miR‐133b Down Mi et al., 202164 Fractured vs no fracture

miR‐1‐3p Down Mi et al., 202164 Fractured vs no fracture

miR‐194‐5p Down Mi et al., 202164 Fractured vs no fracture

miR‐1973 Up Mi et al., 202164 Fractured vs no fracture

miR‐200a‐3p Up Mi et al., 202164 Fractured vs no fracture

miR‐33b‐3p Up Mi et al., 202164 Fractured vs no fracture

miR‐365b‐3p Up Mi et al., 202164 Fractured vs no fracture

miR‐378e Up Mi et al., 202164 Fractured vs no fracture

miR‐378f Up Mi et al., 202164 Fractured vs no fracture

miR‐378g Up Mi et al., 202164 Fractured vs no fracture

miR‐383‐3p Down Mi et al., 202164 Fractured vs no fracture

miR‐4485 Up Mi et al., 202164 Fractured vs no fracture

miR‐4536‐3p Up Mi et al., 202164 Fractured vs no fracture

miR‐511‐5p Up Mi et al., 202164 Fractured vs no fracture

miR‐548qr‐3p Down Mi et al., 202164 Fractured vs no fracture

miR‐5582‐3p Down Mi et al., 202164 Fractured vs no fracture

miR‐5699‐3p Up Mi et al., 202164 Fractured vs no fracture

miR‐6859‐5p Down Mi et al., 202164 Fractured vs no fracture

miR‐146 Up Saulle et al., 202166 Pregnant vs non‐pregnant women

miR‐146a Up Saulle et al., 202166 Pregnant vs non‐pregnant women

miR‐150 Up Saulle et al., 202166 Pregnant vs non‐pregnant women

miR‐190 Up Saulle et al., 202166 Pregnant vs non‐pregnant women

miR‐21b Up Saulle et al., 202166 Pregnant vs non‐pregnant women

miR‐23b Up Saulle et al., 202166 Pregnant vs non‐pregnant women

miR‐28 Up Saulle et al., 202166 Pregnant vs non‐pregnant women

miR‐29a Up Saulle et al., 202166 Pregnant vs non‐pregnant women

miR‐346 Up Saulle et al., 202166 Pregnant vs non‐pregnant women

miR‐92 Up Saulle et al., 202166 Pregnant vs non‐pregnant women

AHMAD ET AL. - 23 of 31

 10991654, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rm

v.2449 by C
ochraneU

nitedA
rabE

m
irates, W

iley O
nline L

ibrary on [06/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



As miRNA expression is associated with disease progression, we

were also interested in identifying miRNAs that could distinguish

intermediate disease stages. Towards this end, we identified 71

miRNAs which appeared in more than 5 comparative disease severity

groups (Figures 6 and 7). Our analysis showed that the expression of

miR‐320b, miR‐18a‐5p, miR‐320c, miR‐144‐5p, miR‐15a‐5p, miR‐
342‐3p, miR‐451a, and miR‐548k was consistent during progres-

sion of disease severity. Interestingly, miR‐150‐5p was reported 12

times in seven comparative groups; however, its expression was not

consistent within groups. Similar findings were observed for miR‐16‐
2‐3p, miR‐1246, miR‐142‐5p, miR‐185‐5p, and miR‐4662a‐5p that

failed to show expression consistency within groups (Figures 6 and

7). Although most of the infected patients recovered fully, unfortu-

nately, a small minority could not bear the brunt of the disease and

died during the course of the infection. We found 10 unique miRNAs

that were only present in the deceased group, including: miR‐145,
miR‐17‐p, miR‐208a, miR‐24, miR‐422a, miR‐499, miR‐8061, miR‐
885, miR‐101‐5p, and miR‐132 3p. Thus, presence of these miR-

NAs may indicate a poor prognosis for patient survival. Of course,

this would need further validation.

As mentioned in the introduction, the biogenesis of miRNAs re-

sults into two strands (arms), namely 5p and 3p. Although most of the

studies observed concordant dysregulation of the targets by both

arms, there is much evidence where both arms oppositely regulate

their targets or result in distinct biological effects.126–128 During the

course of analysis performed for this study, some studies identified

the 5p or 3p character of the miRNAs, while others did not that could

have resulted in different effects on their targets. To avoid this

conflict, we removed several frequently existing miRNAs (≥ five

times) from many groups. While these miRNAs were not included in

the downstream analysis, they still have their significance in disease

progression and include, miR‐126, miR‐150, miR‐155, miR‐17, miR‐
21, miR‐223, miR‐29c, miR‐3180, miR‐320a, and miR‐98. The

expression of miR‐3180, miR‐3180‐3p, miR‐3180‐5p, miR‐320a,
miR‐320a‐3p, miR‐98, and miR‐98‐3p was upregulated in the infec-

ted patients among different groups (Table S7); whereas, the

expression of miR‐223‐3p, miR‐29c‐5p, and miR‐98‐5p was down‐
regulated upon SARS‐CoV‐2 infection. The expression of miR‐150‐
5p and miR‐155‐5p was down‐regulated in the Inf vs C group.

However, contradictory results were observed among other disease

sub‐stages. The expression of different transcripts of the other

miRNAs remained inconsistent among disease groups.

We also found some studies where researchers reported signifi-

cant alteration of some miRNAs in SARS‐CoV‐2‐infected patients

during the presence of other co‐morbidities like influenza,

community‐acquired pneumonia, diabetes, pregnancy, cerebrovascu-

lar disease, common cold, or bone fractures. We compared these re-

sults from other studies and identified five unique miRNAs (miR‐362‐
3p, miR‐376a‐3p, miR‐382‐5p, miR‐451ab, and miR‐99b‐5p) that
could differentiate community‐acquired pneumonia from SARS‐CoV‐
2‐infected patients and one miRNA (miR‐2392) that could distinguish
common cold patients from SARS‐CoV‐2‐infected patients. Further-

more, we identified 19 miRNAs that were uniquely dysregulated in

infected patients due to bone fractures and 10 miRNAs unique to

pregnant women only (Table 4). Thus, these identified miRNAs may

serve as promising candidates to differentiate between different in-

fections and diseased conditions or states. Furthermore, the molec-

ular mechanisms and pathways associated with these miRNAs could

be helpful in better understanding disease pathophysiology as well as

for the development of specific treatments.

4.1 | Current status of already proposed
biomarkers miRNAs in COVID‐19

The published studies included in this review proposed multiple miR-

NAs as possible biomarkers and most of them were validated in the

secondary cohorts of the same study. We found that most of the

miRNAs detected in one study were either present in other studies or

had an opposite expression within the specific group. For example,

Akula et al, 2022 observed significant dysregulation of eight miRNAs

in infected patients; however, out of these, only miR‐150‐5p was re-
ported by others with identical expression trends. Therefore, miRNAs

reported once or not expressed in similarmannerswere removed from

further analysis. Table 5 signifies miRNAs that were reported in at

least two different studies and showed a consistent expression profile

across the studies. It also shows the tissue sample used for extraction

of the RNA and reports results (up or down) between different groups,

including Inf vs C, S vs C, S vs patients from other disease stages.

Based on this analysis, we highlighted 10 possible miRNAs as

COVID‐19 biomarkers, showing consistent expression profile among

several studies (Table 6). Four of these were up‐regulated (miR‐193a‐
5p, miR‐320b, miR‐423‐5p, miR‐6721‐5p) and five were down‐
regulated (miR‐150‐5p, miR‐342‐3p, miR‐144‐3p, miR‐144‐5p, miR‐
29b‐3p) during disease progression, whereas the expression of one

miRNA (miR‐15a‐5p) was down‐regulated during the severe stage.

Most of these miRNAs were associated with host‐immune response
after infection or the virus itself. MiR‐193a‐5p has been found to

regulate TOMM70 receptor and it is possible that this miRNA may be

associatedwith SARS‐CoV‐2 life cycle during its pathogenesis.108Mir‐
320 family has beenwell studied in COVID‐19 pathogenesis and found
to be associated with TGF‐β signalling pathway that may further

regulate pro‐inflammatory and thromboembolic processes in infected
patients.77,129 Another up‐regulated miRNA after infection was miR‐
423‐5p. This miRNA regulates MALAT1 expression and has been

found to induce survival and decrease metastases in mice model by

inhibiting MALTA1‐mediated proliferation, tumour growth and

metastasis.130 As this miRNA also induces apoptosis and autophagy in

cancer cells,131 it is possible that induced expression of miR‐423‐5p
after SARS‐CoV‐2 infection may help host to clear infected cells. We

also observed consistent up‐regulation of miR‐6721‐5p in SARS‐CoV‐
2 infected patients. Although the exact role of this miRNA is not

known, putative target prediction showed that it may regulate cellular

transport. MiR‐150‐5p inhibits the viral structural protein Nsp10

expression and this suggests that decline in miR‐150‐5p may increase
COVID‐19 disease severity by allowing SARS‐CoV‐2 infection.69
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TAB L E 5 Potential miRNA biomarkers detected consistently in at least two studies.

Study
Tissue
sample Disease stages

MiRNAs detected

Up‐regulated Down‐regulated

MiRNAs detected in infected patients compared to healthy controls

Eichmeier et al,

202271
Nasal Swab Inf vs C (n = 1) miR‐21 ‐

Farr et al,

202272
Plasma Inf vs C (n = 13) miR‐103a‐3p, miR‐1290, miR‐148a‐3p, miR‐

193a‐5p, miR‐19a‐3p, miR‐320a‐3p, miR‐
320b, miR‐320c, miR‐423‐5p, miR‐6721‐
5p

miR‐1275, miR‐145‐3p, miR‐150‐5p

Fayyad‐Kazan
et al,

202157

Plasma Inf vs C (n = 4) miR‐140‐3p, miR‐15a‐5p, miR‐194‐5p, miR‐
19a‐3p

‐

Fernandez‐
Pato et al,

202273

Plasma Inf vs C (n = 30) let‐7a‐3p, miR‐10399‐3p, miR‐103a‐3p, miR‐
1246, miR‐125b‐5p, miR‐1290, miR‐15a‐
5p, miR‐193a‐5p, miR‐194‐5p, miR‐22‐3p,
miR‐27b‐3p, miR‐320a‐3p, miR‐320b, miR‐
320c, miR‐320d, miR‐423‐5p, miR‐4443,
miR‐4659a‐3p, miR‐4685‐3p, miR‐505‐5p,
miR‐574‐3p, miR‐6511a‐3p, miR‐6721‐5p,
miR‐6873‐3p

miR‐1275, miR‐146b‐5p, miR‐150‐5p, miR‐
328‐3p, miR‐342‐3p, miR‐487b‐3p

de Gonzalo‐
Calvo et al,

202155

Plasma Inf vs C (n = 1) miR‐27b‐3p ‐

Gutmann et al,

202278
Plasma Inf vs C (n = 15) let‐7a‐3p, miR‐1246, miR‐1290, miR‐148a‐3p,

miR‐15a‐5p, miR‐22‐3p, miR‐27b‐3p, miR‐
574‐3p

miR‐10a‐5p, miR‐145‐3p, miR‐150‐5p, miR‐
183‐5p, miR‐342‐3p, miR‐4433b‐5p, miR‐
487b‐3p

Keikha et al,

202168
Serum Inf vs C (n = 1) ‐ miR‐126‐3p

Li et al, 202085 Serum Inf vs C (n = 7) miR‐10399‐3p, miR‐125b‐5p, miR‐4659a‐3p,
miR‐4685‐3p, miR‐505‐5p

miR‐146b‐5p, miR‐183‐5p

Li et al, 202281 Whole blood Inf vs C (n = 1) ‐ miR‐150‐5p

McDonald

et al,

202163

Plasma

andNasal

Swab

Inf vs C (n = 1) ‐ miR‐10a‐5p

Nicoletti et al,

202282
Plasma Inf vs C (n = 9) miR‐6873‐3p, miR‐320b, miR‐7111‐3p, miR‐

320c, miR‐6511a‐3p, miR‐320d
miR‐126‐3p, miR‐150‐5p, miR‐4433b‐5p

Saulle et al,

202166
Plasma/

Placenta

Inf vs C (n = 7) miR‐21 ‐

Wu et al,

202283
Nasal Swab Inf vs C (n = 7) miR‐140‐3p, miR‐186‐5p, miR‐320b, miR‐

320c, miR‐4443, miR‐7111‐3p
miR‐328‐3p

miRNAs detected in patients with severe disease compared to healthy controls

Akula et al,

202269
Plasma S vs C (n = 2) ‐ miR‐150‐5p, miR‐375

Chen et al,

202084
Whole blood S vs C (n = 29) miR‐1226‐3p, miR‐1273h‐5p, miR‐1292‐5p,

miR‐1307‐3p, miR‐1538, miR‐185‐3p, miR‐
210‐5p, miR‐3177‐3p, miR‐423‐3p, miR‐
671‐3p, miR‐6721‐5p, miR‐937‐3p

miR‐106b‐5p, miR‐150‐5p, miR‐375, miR‐144‐
3p, miR‐144‐5p, miR‐15a‐5p, miR‐18a‐5p,
miR‐16‐2‐3p, miR‐16‐5p, miR‐192‐5p,
miR‐20b‐5p, miR‐29b‐3p, miR‐31‐5p miR‐
32‐5p, miR‐624‐5p, miR‐7‐5p, miR‐95‐3p

(Continues)
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Interestingly, treatmentwith the anti‐inflammatory drug “simvastatin”
induced miR‐150‐5p levels and decreased disease severity in SARS‐
CoV‐2 infected patients, supporting this hypothesis.132

We also observed a consistent down‐regulation of miR‐342‐5p
that is mainly involved in inflammatory stimulation of macro-

phages.133 Targeting analysis showed that this miRNA might be able

to target SARS‐CoV‐2 nucleocapsid, ORF1ab, and ORF3a domains

and thus may be involved in regulating virus replication.134 There is

evidence that decreased miR‐144 levels could indicate compromised
immune response and could be used as a biomarker to predict

COVID‐19 disease severity and mortality.104 Decreased expression

of miR‐29b‐3p is associated with airway inflammation and regulate

T A B L E 5 (Continued)

Study
Tissue
sample Disease stages

MiRNAs detected

Up‐regulated Down‐regulated

Tang et al,

202086
Whole blood S vs C (n = 27) miR‐1226‐3p, miR‐1273h‐5p, miR‐1292‐5p,

miR‐1307‐3p, miR‐1538, miR‐185‐3p, miR‐
210‐5p, miR‐3177‐3p, miR‐423‐3p, miR‐
671‐3p, miR‐6721‐5p, miR‐937‐3p

miR‐106b‐5p, miR‐144‐3p, miR‐144‐5p, miR‐
15a‐5p, miR‐16‐2‐3p, miR‐16‐5p, miR‐
18a‐5p, miR‐192‐5p, miR‐20b‐5p, miR‐
29b‐3p, miR‐31‐5p, miR‐32‐5p, miR‐624‐
5p, miR‐7‐5p, miR‐95‐3p

miRNAs detected in severe stage of COVID‐19 compared to other disease stages

Garcia‐Giralt
et al,

202275

Serum S vs MI (n = 7) miR‐193a‐5p, miR‐320b miR‐144‐3p, miR‐144‐5p, miR‐29b‐3p, miR‐
342‐3p, miR‐451a, miR‐96‐5p

Grehl et al,

202160
Plasma S vs MI (n = 6) miR‐320b miR‐144‐5p, miR‐29b‐3p, miR‐363‐3p, miR‐

451a

Gutmann et al,

202278
Plasma S vs MI (n = 1) miR‐193a‐5p ‐

Nicoletti et al,

202282
Plasma S vs MI (n = 6) ‐ miR‐144‐3p, miR‐144‐5p, miR‐342‐3p miR‐

363‐3p, miR‐451a, miR‐96‐5p

Fernandez‐
Pato et al,

202273

Plasma S vs MO (n = 4) miR‐185‐5p, miR‐423‐5p, miR‐584‐5p, miR‐
629‐5p

‐

Gutmann et al,

202278
Plasma S vs MO (n = 1) miR‐182‐5p ‐

Tang et al,

202086
Whole blood S vs MO (n = 5) miR‐182‐5p, miR‐185‐5p, miR‐423‐5p, miR‐

584‐5p, miR‐629‐5p

Abbreviations: Inf vs C, Infected versus Control; S vs C, Severe versus Control; S vs MI, Severe versus Mild; S vs MO, Severe versus Moderate.

TAB L E 6 MiRNAs with consistent expression profiles in different disease stages of SARS‐CoV‐2 infection.

MiRNA Potential target Pathway

Expression

Inf vs C MO vs C S vs C S vs MI S vs MO

miR‐193a‐5p TOMM70 receptor Transportation Up Up Up

miR‐320b TGFβ Immune response Up Up Up

miR‐423‐5p MALAT1 expression Tumour suppressor Up Up Up

miR‐6721‐5p Cellular transport Immune response Up Up

miR‐15a‐5p mTOR signalling Up Down

miR‐150‐5p Nsp 10 Viral replication, apoptosis Down Down

miR‐342‐3p Nucleocapsid Viral replication; immune response Down Down Down Down

miR‐144‐3p Cytokines Immune response Down Down Down Down

miR‐144‐5p Cytokines Immune response Down Down Down Down

miR‐29b‐3p Inflammation, IL‐8 Immune response Down Down Down Down

Abbreviations: Inf vs C, Infected versus Control; MO vs C, Moderate versus Control; S vs C, Severe versus Control; S vsMI, Severe versus Mild; S vsMO,

Severe versus Moderate.
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inflammatory cytokine IL‐8 expression.135 Down‐regulated expres-

sion of miR‐29b‐3p might be a biomarker of disease severity in SARS‐
CoV‐2 infection.105 We found miR‐15a‐5p as a suitable biomarker to
distinguish severe stage from others during SARS‐CoV‐2 infection.

Down‐regulation of miR‐15a‐5p may be a sign of uncontrolled

immune‐thrombosis and/or thrombo‐inflammation.136 A current

study by Wu et al suggests that down‐regulated expression of miR‐
15a‐5p could induce/activate interferon‐1 signalling pathway to

overcome SARS‐CoV‐2 severity.105 Overall, if these miRNAs

continue to show consistent expression in future studies, these could

be considered as possible biomarkers in COVID‐19 prognosis.

Meanwhile, targeting these miRNAs may be helpful to create future

therapies against SARS‐CoV‐2 infection.

5 | CONCLUSIONS

In this systematic review, we were able to identify miRNAs from

published literature that not only distinguished infected patients from

healthy controls, but also were able to discriminate stages of disease

severity, poor disease prognosis, and even death. These miRNAs

showed consistent expressions within groups and can potentially be

used as possible biomarkers. Furthermore, we also identified unique

miRNAs associated with patients with specific co‐morbidities.
Although any change in the expression of these miRNAs could be used

as specific biomarkers of SARS‐CoV‐2 infection, COVID‐19 disease

progression, and mortality, further validation is needed. Considering

that SARS‐CoV‐2 has become endemic in the human population and is
here to stay, the emergence of new SARS‐CoV‐2 variants with

pandemic potential exists. Thus, this study offers a valuable addition

to the literature towards the identification of miRNA‐based bio-

markers that could eventually be used in the development of miRNA‐
based antivirals and therapeutics for COVID‐19.

5.1 | Limitations and future perspectives

In this review, we included only those studies originating from human

patients with the hope that our effort will help identify a list ofmiRNAs

that could be used as potential biomarkers in SARS‐CoV‐2 infected

patients as prognostic markers. The results extracted from these

studies needs proper validation as we found vast differences inmiRNA

expression profiles within same groups between studies. It is not

surprising that validated biomarkers in one study might not be the

same as those in another study conducted elsewhere since ethnicity,

gender, age, presence of co‐morbidities, effect of medications taken
for such co‐morbidities, types of COVID‐19 treatments and vaccines
taken, and other environmental factors (such as the strain of SARS‐
CoV‐2) may influence miRNAs expression profiles in COVID‐19 pa-

tients. We anticipate that data gathered from other in vitro, in vivo, or

in silico studies as well as future studies in humans could help confirm

some of these miRNAs as biomarkers and/or clarify the mechanistic

aspects of the function of the identified miRNAs.
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